AST抽象语法树 Javascript版

在javascript世界中,你可以认为抽象语法树(AST)是最底层。 再往下,就是关于转换和编译的“黑魔法”领域了。

现在,我们拆解一个简单的add函数

function add(a, b) {
    return a + b
}

首先,我们拿到的这个语法块,是一个FunctionDeclaration(函数定义)对象。

用力拆开,它成了三块:

  • 一个id,就是它的名字,即add
  • 两个params,就是它的参数,即[a, b]
  • 一块body,也就是大括号内的一堆东西

add没办法继续拆下去了,它是一个最基础Identifier(标志)对象,用来作为函数的唯一标志。

{
    name: 'add'
    type: 'identifier'
    ...
}

params继续拆下去,其实是两个Identifier组成的数组。之后也没办法拆下去了。

[
    {
        name: 'a'
        type: 'identifier'
        ...
    },
    {
        name: 'b'
        type: 'identifier'
        ...
    }
]

接下来,我们继续拆开body
我们发现,body其实是一个BlockStatement(块状域)对象,用来表示是{return a + b}

打开Blockstatement,里面藏着一个ReturnStatement(Return域)对象,用来表示return a + b

继续打开ReturnStatement,里面是一个BinaryExpression(二项式)对象,用来表示a + b

继续打开BinaryExpression,它成了三部分,leftoperatorright

  • operator+
  • left 里面装的,是Identifier对象 a
  • right 里面装的,是Identifer对象 b

就这样,我们把一个简单的add函数拆解完毕。

抽象语法树(Abstract Syntax Tree),的确是一种标准的树结构。

那么,上面我们提到的Identifier、Blockstatement、ReturnStatement、BinaryExpression, 这一个个小部件的说明书去哪查?

请查看 AST对象文档

recast

输入命令:npm i recast -S

你即可获得一把操纵语法树的螺丝刀

接下来,你可以在任意js文件下操纵这把螺丝刀,我们新建一个parse.js示意:

创建parse.js文件

// 给你一把"螺丝刀"——recast
const recast = require("recast");

// 你的"机器"——一段代码
// 我们使用了很奇怪格式的代码,想测试是否能维持代码结构
const code =
  `
  function add(a, b) {
    return a +
      // 有什么奇怪的东西混进来了
      b
  }
  `
// 用螺丝刀解析机器
const ast = recast.parse(code);

// ast可以处理很巨大的代码文件
// 但我们现在只需要代码块的第一个body,即add函数
const add  = ast.program.body[0]

console.log(add)

输入node parse.js你可以查看到add函数的结构,与之前所述一致,通过AST对象文档可查到它的具体属性:

FunctionDeclaration{
    type: 'FunctionDeclaration',
    id: ...
    params: ...
    body: ...
}

recast.types.builders 制作模具

recast.types.builders里面提供了不少“模具”,让你可以轻松地拼接成新的机器。

最简单的例子,我们想把之前的function add(a, b){...}声明,改成匿名函数式声明const add = function(a ,b){...}

如何改装?

第一步,我们创建一个VariableDeclaration变量声明对象,声明头为const, 内容为一个即将创建的VariableDeclarator对象。

第二步,创建一个VariableDeclarator,放置add.id在左边, 右边是将创建的FunctionDeclaration对象

第三步,我们创建一个FunctionDeclaration,如前所述的三个组件,id params body中,因为是匿名函数id设为空,params使用add.params,body使用add.body。

这样,就创建好了const add = function(){}的AST对象。

在之前的parse.js代码之后,加入以下代码

// 引入变量声明,变量符号,函数声明三种“模具”
const {variableDeclaration, variableDeclarator, functionExpression} = recast.types.builders

// 将准备好的组件置入模具,并组装回原来的ast对象。
ast.program.body[0] = variableDeclaration("const", [
  variableDeclarator(add.id, functionExpression(
    null, // 匿名化函数表达式.
    add.params,
    add.body
  ))
]);

//将AST对象重新转回可以阅读的代码
//这一行其实是recast.parse的逆向过程,具体公式为
//recast.print(recast.parse(source)).code === source
const output = recast.print(ast).code;

console.log(output)

打印出来还保留着“原装”的函数内容,连注释都没有变。

我们其实也可以打印出美化格式的代码段:

const output = recast.prettyPrint(ast, { tabWidth: 2 }).code

//输出为
const add = function(a, b) {
  return a + b;
};

实战进阶:命令行修改js文件

除了parse/print/builder以外,Recast的三项主要功能:

  • run: 通过命令行读取js文件,并转化成ast以供处理。
  • tnt: 通过assert()和check(),可以验证ast对象的类型。
  • visit: 遍历ast树,获取有效的AST对象并进行更改。

通过一个系列小务来学习全部的recast工具库:

demo.js

function add(a, b) {
  return a + b
}

function sub(a, b) {
  return a - b
}

function commonDivision(a, b) {
  while (b !== 0) {
    if (a > b) {
      a = sub(a, b)
    } else {
      b = sub(b, a)
    }
  }
  return a
}

recast.run 命令行文件读取

新建一个名为read.js的文件,写入

read.js

recast.run( function(ast, printSource){
    printSource(ast)
})

命令行输入

node read demo.js

我们查以看到js文件内容打印在了控制台上。

我们可以知道,node read可以读取demo.js文件,并将demo.js内容转化为ast对象。

同时它还提供了一个printSource函数,随时可以将ast的内容转换回源码,以方便调试。

recast.visit AST节点遍历

read.js

#!/usr/bin/env node
const recast  = require('recast')

recast.run(function(ast, printSource) {
  recast.visit(ast, {
      visitExpressionStatement: function({node}) {
        console.log(node)
        return false
      }
    });
});

recast.visit将AST对象内的节点进行逐个遍历。

注意

  • 你想操作函数声明,就使用visitFunctionDelaration遍历,想操作赋值表达式,就使用visitExpressionStatement。 只要在 AST对象文档中定义的对象,在前面加visit,即可遍历。
  • 通过node可以取到AST对象
  • 每个遍历函数后必须加上return false,或者选择以下写法,否则报错:
#!/usr/bin/env node
const recast  = require('recast')

recast.run(function(ast, printSource) {
  recast.visit(ast, {
      visitExpressionStatement: function(path) {
        const node = path.node
        printSource(node)
        this.traverse(path)
      }
    })
});

调试时,如果你想输出AST对象,可以console.log(node)

如果你想输出AST对象对应的源码,可以printSource(node)

命令行输入node read demo.js进行测试。

#!/usr/bin/env node 在所有使用recast.run()的文件顶部都需要加入这一行,它的意义我们最后再讨论。

TNT 判断AST对象类型

TNT,即recast.types.namedTypes,它用来判断AST对象是否为指定的类型。

TNT.Node.assert(),就像在机器里埋好的摧毁器,当机器不能完好运转时(类型不匹配),就摧毁机器(报错退出)

TNT.Node.check(),则可以判断类型是否一致,并输出False和True

上述Node可以替换成任意AST对象

例如:TNT.ExpressionStatement.check(),TNT.FunctionDeclaration.assert()

read.js
#!/usr/bin/env node
const recast = require("recast");
const TNT = recast.types.namedTypes

recast.run(function(ast, printSource) {
  recast.visit(ast, {
      visitExpressionStatement: function(path) {
        const node = path.value
        // 判断是否为ExpressionStatement,正确则输出一行字。
        if(TNT.ExpressionStatement.check(node)){
          console.log('这是一个ExpressionStatement')
        }
        this.traverse(path);
      }
    });
});

read.js

#!/usr/bin/env node
const recast = require("recast");
const TNT = recast.types.namedTypes

recast.run(function(ast, printSource) {
  recast.visit(ast, {
      visitExpressionStatement: function(path) {
        const node = path.node
        // 判断是否为ExpressionStatement,正确不输出,错误则全局报错
        TNT.ExpressionStatement.assert(node)
        this.traverse(path);
      }
    });
});

实战:用AST修改源码,导出全部方法

exportific.js

现在,我们想让这个文件中的函数改写成能够全部导出的形式,例如

function add (a, b) {
    return a + b
}

想改变为

exports.add = (a, b) => {
  return a + b
}

首先,我们先用builders凭空实现一个键头函数

exportific.js
#!/usr/bin/env node
const recast = require("recast");
const {
  identifier:id,
  expressionStatement,
  memberExpression,
  assignmentExpression,
  arrowFunctionExpression,
  blockStatement
} = recast.types.builders

recast.run(function(ast, printSource) {
  // 一个块级域 {}
  console.log('\n\nstep1:')
  printSource(blockStatement([]))

  // 一个键头函数 ()=>{}
  console.log('\n\nstep2:')
  printSource(arrowFunctionExpression([],blockStatement([])))

  // add赋值为键头函数  add = ()=>{}
  console.log('\n\nstep3:')
  printSource(assignmentExpression('=',id('add'),arrowFunctionExpression([],blockStatement([]))))

  // exports.add赋值为键头函数  exports.add = ()=>{}
  console.log('\n\nstep4:')
  printSource(expressionStatement(assignmentExpression('=',memberExpression(id('exports'),id('add')),
    arrowFunctionExpression([],blockStatement([])))))
});

上面写了我们一步一步推断出exports.add = ()=>{}的过程,从而得到具体的AST结构体。

使用node exportific demo.js运行可查看结果。

接下来,只需要在获得的最终的表达式中,把id(‘add‘)替换成遍历得到的函数名,把参数替换成遍历得到的函数参数,把blockStatement([])替换为遍历得到的函数块级作用域,就成功地改写了所有函数!

另外,我们需要注意,在commonDivision函数内,引用了sub函数,应改写成exports.sub

exportific.js
#!/usr/bin/env node
const recast = require("recast");
const {
  identifier: id,
  expressionStatement,
  memberExpression,
  assignmentExpression,
  arrowFunctionExpression
} = recast.types.builders

recast.run(function (ast, printSource) {
  // 用来保存遍历到的全部函数名
  let funcIds = []
  recast.types.visit(ast, {
    // 遍历所有的函数定义
    visitFunctionDeclaration(path) {
      //获取遍历到的函数名、参数、块级域
      const node = path.node
      const funcName = node.id
      const params = node.params
      const body = node.body

      // 保存函数名
      funcIds.push(funcName.name)
      // 这是上一步推导出来的ast结构体
      const rep = expressionStatement(assignmentExpression('=', memberExpression(id('exports'), funcName),
        arrowFunctionExpression(params, body)))
      // 将原来函数的ast结构体,替换成推导ast结构体
      path.replace(rep)
      // 停止遍历
      return false
    }
  })

  recast.types.visit(ast, {
    // 遍历所有的函数调用
    visitCallExpression(path){
      const node = path.node;
      // 如果函数调用出现在函数定义中,则修改ast结构
      if (funcIds.includes(node.callee.name)) {
        node.callee = memberExpression(id('exports'), node.callee)
      }
      // 停止遍历
      return false
    }
  })
  // 打印修改后的ast源码
  printSource(ast)
})

一步到位,发一个最简单的exportific前端工具

以下代码添加作了两个小改动

  1. 添加说明书--help,以及添加了--rewrite模式,可以直接覆盖文件或默认为导出*.export.js文件。
  2. 将之前代码最后的 printSource(ast)替换成 writeASTFile(ast,filename,rewriteMode)

exportific.js

#!/usr/bin/env node
const recast = require("recast");
const {
  identifier: id,
  expressionStatement,
  memberExpression,
  assignmentExpression,
  arrowFunctionExpression
} = recast.types.builders

const fs = require('fs')
const path = require('path')
// 截取参数
const options = process.argv.slice(2)

//如果没有参数,或提供了-h 或--help选项,则打印帮助
if(options.length===0 || options.includes('-h') || options.includes('--help')){
  console.log(`
    采用commonjs规则,将.js文件内所有函数修改为导出形式。

    选项: -r  或 --rewrite 可直接覆盖原有文件
    `)
  process.exit(0)
}

// 只要有-r 或--rewrite参数,则rewriteMode为true
let rewriteMode = options.includes('-r') || options.includes('--rewrite')

// 获取文件名
const clearFileArg = options.filter((item)=>{
  return !['-r','--rewrite','-h','--help'].includes(item)
})

// 只处理一个文件
let filename = clearFileArg[0]

const writeASTFile = function(ast, filename, rewriteMode){
  const newCode = recast.print(ast).code
  if(!rewriteMode){
    // 非覆盖模式下,将新文件写入*.export.js下
    filename = filename.split('.').slice(0,-1).concat(['export','js']).join('.')
  }
  // 将新代码写入文件
  fs.writeFileSync(path.join(process.cwd(),filename),newCode)
}

recast.run(function (ast, printSource) {
  let funcIds = []
  recast.types.visit(ast, {
    visitFunctionDeclaration(path) {
      //获取遍历到的函数名、参数、块级域
      const node = path.node
      const funcName = node.id
      const params = node.params
      const body = node.body

      funcIds.push(funcName.name)
      const rep = expressionStatement(assignmentExpression('=', memberExpression(id('exports'), funcName),
        arrowFunctionExpression(params, body)))
      path.replace(rep)
      return false
    }
  })

  recast.types.visit(ast, {
    visitCallExpression(path){
      const node = path.node;
      if (funcIds.includes(node.callee.name)) {
        node.callee = memberExpression(id('exports'), node.callee)
      }
      return false
    }
  })

  writeASTFile(ast,filename,rewriteMode)
})

现在尝试一下

node exportific demo.js

已经可以在当前目录下找到源码变更后的demo.export.js文件了。

npm发包

编辑一下package.json文件

{
  "name": "exportific",
  "version": "0.0.1",
  "description": "改写源码中的函数为可exports.XXX形式",
  "main": "exportific.js",
  "bin": {
    "exportific": "./exportific.js"
  },
  "keywords": [],
  "author": "wanthering",
  "license": "ISC",
  "dependencies": {
    "recast": "^0.15.3"
  }
}

注意bin选项,它的意思是将全局命令exportific指向当前目录下的exportific.js

这时,输入npm link 就在本地生成了一个exportific命令。

之后,只要哪个js文件想导出来使用,就exportific XXX.js一下。

一定要注意exportific.js文件头有

#!/usr/bin/env node

接下来,正式发布npm包!

如果你已经有了npm 帐号,请使用npm login登录

如果你还没有npm帐号 https://www.npmjs.com/signup 非常简单就可以注册npm

然后,输入
npm publish

没有任何繁琐步骤,丝毫审核都没有,你就发布了一个实用的前端小工具exportific 。任何人都可以通过

npm i exportific -g

全局安装这一个插件。

提示:在试验教程时,请不要和我的包重名,修改一下发包名称。

#!/usr/bin/env node

不同用户或者不同的脚本解释器有可能安装在不同的目录下,系统如何知道要去哪里找你的解释程序呢? /usr/bin/env就是告诉系统可以在PATH目录中查找。 所以配置#!/usr/bin/env node, 就是解决了不同的用户node路径不同的问题,可以让系统动态的去查找node来执行你的脚本文件。

如果出现No such file or directory的错误?因为你的node安装路径没有添加到系统的PATH中。所以去进行node环境变量配置就可以了。

要是你只是想简单的测试一下,那么你可以通过which node命令来找到你本地的node安装路径,将/usr/bin/env改为你查找到的node路径即可。



参考文章:https://segmentfault.com/a/1190000016231512?utm_source=tag-newest#comment-area

原文地址:https://www.cnblogs.com/rope/p/11934468.html

时间: 2024-07-31 18:45:04

AST抽象语法树 Javascript版的相关文章

AST 抽象语法树

提起 AST 抽象语法树,大家可能并不感冒.但是提到它的使用场景,也许会让你大吃一惊.原来它一直在你左右与你相伴,而你却不知. 一.什么是抽象语法树 在计算机科学中,抽象语法树(abstract syntax tree 或者缩写为 AST),或者语法树(syntax tree),是源代码的抽象语法结构的树状表现形式,这里特指编程语言的源代码.树上的每个节点都表示源代码中的一种结构. 之所以说语法是「抽象」的,是因为这里的语法并不会表示出真实语法中出现的每个细节. 二.使用场景 JS 反编译,语法

使用PHP-Parser生成AST抽象语法树

0.前言 最近项目的流程逐渐清晰,但是很多关键性的技术没有掌握,也只能一步一步摸索. 由于要做基于数据流分析的静态代码分析,所以前端的工作如:词法分析.语法分析必不可少.Yacc和Lex什么的就不再考虑了,查了一天的资料,发现两款比较适合,一款是Java下的ANTLR,另一款是专门做PHP AST生成的PHP-Parser. ANTLR是编译原理领域比较著名的工具了,相对于Yacc和Lex,更加实用.但是对PHP的语法文件只有一个,折腾了半天才生成调通,发现不太适合,对于"$a=1"生

用python演示一个简单的AST(抽象语法树)

假设对'a + 3 * b'进行解释,其中a=2,b=5 代码很简单,就不再进行详细的解释了. Num = lambda env, n: n Var = lambda env, x: env[x] Add = lambda env, a, b:_eval(env, a) + _eval(env, b) Mul = lambda env, a, b:_eval(env, a) * _eval(env, b) _eval = lambda env, expr:expr[0](env, *expr[1

JavaScript的工作原理:解析、抽象语法树(AST)+ 提升编译速度5个技巧

这是专门探索 JavaScript 及其所构建的组件的系列文章的第 14 篇. 如果你错过了前面的章节,可以在这里找到它们: JavaScript 是如何工作的:引擎,运行时和调用堆栈的概述! JavaScript 是如何工作的:深入V8引擎&编写优化代码的5个技巧! JavaScript 是如何工作的:内存管理+如何处理4个常见的内存泄漏 ! JavaScript 是如何工作的:事件循环和异步编程的崛起+ 5种使用 async/await 更好地编码方式! JavaScript 是如何工作的:

Babel(抽象语法树,又称AST)

文章:https://juejin.im/post/5a9315e46fb9a0633a711f25 https://github.com/jamiebuilds/babel-handbook/blob/master/translations/zh-Hans/plugin-handbook.md 你了解过Babel吗? 了解过抽象语法树,又称AST,有学习过,也写过一个基于AST的乞丐版模板引擎,先是词法解析token,然后生产抽象语法树,然后更改抽象语法树,当然这是插件做的事情,最后根据新的A

五分钟了解抽象语法树(AST)babel是如何转换的?

抽象语法树 什么是抽象语法树? It is a hierarchical program representation that presents source code structure according to the grammar of a programming language, each AST node corresponds to an item of a source code. 抽象语法树是源代码语法结构的一种抽象表示.它以树状的形式表现编程语言的语法结构,树上的每个节点

复杂网络,抽象语法树

近期看了一些软件抽象为复杂网络,以及软件抽象成静态语法树的文章.做一个小总结. 1.复杂网络是由大量的边和点组成的,边点都可以有类型,加权值,边还可以有方向.如何计算边和点的权值是一个关键点,如何在不执行代码的情况下确定边的方向,目前不确定是否已经解决. 有许多工具,可以直接扫描软件源代码,抽象为复杂网络.然而我还没亲身实践,且做个记录. Dependency Finder分析编译后的java代码,能够提取依赖图. Doxygen是使用c++开发的基于源代码注释的文档生成工具.但是这个注释,是人

解释抽象语法树

创建了抽象语法树之后,有两个选择:解释或编译.解释,简单地说,就是遍历树,同时执行操作:编译,就是改变成其他形式,对于机器执行来说可能更简单,通常可能更快.这一小节先讨论如何解释结果,下面一小节再讨论编译的内容,最后,再讨论何时应该用解释,何时应该用编译的问题. 下面的例子是一个很小解释器,解释抽象语法树的主要工作由函数interpret 完成,它遍历树,并同时执行需要的动作.逻辑相当简单,如果发现一个文字值或标识符,就返回相应值: | Ident (s) ->variableDict.[s]

抽象语法树(Abstract Syntax Tree)

抽象语法树(AST)表示组成程序的结构,可以让程序员更容易使用,F# 适宜这种开发的一个原因就是它的联合类型.这种类型非常适合表示语言,因为它可以用来表示相关而结构不相同的项目.下面就是抽象语法树的例子: type Ast = | Ident of string | Val of System.Double | Multi of Ast * Ast | Div of Ast * Ast | Plus of Ast * Ast | Minus of Ast * Ast 树非常简单,只包含一种类型: