二进制的保护机制

0x00 checksec

这里主要讲的是CTF中linux下的ELF二进制文件的保护机制。在linux中有一个脚本checksec命令可以查看当前二进制文件的保护机制。任意安装一款gdb插件都会把checksec脚本包含进来。

在gdb中执行:
gdb> checksec test
Canary                      : No
NX                            : Yes
PIE                           : No
Fortify                       : No
RelRO                        : Partial

直接在shell中执行:
$ checksec test
Arch:     i386-32-little
RELRO:    Partial RELRO
Stack:    No canary found
NX:       NX enabled
PIE:      No PIE (0x8048000)

可以看到checksec可以查看当前二进制文件的指令架构以及采取了哪些保护机制。

0x01 二进制保护机制

1.Canary(栈保护)

这个选项表示栈保护功能有没有开启。

栈溢出保护是一种缓冲区溢出攻击缓解手段,当函数存在缓冲区溢出攻击漏洞时,攻击者可以覆盖栈上的返回地址来让shellcode能够得到执行。当启用栈保护后,函数开始执行的时候会先往栈里插入cookie信息,当函数真正返回的时候会验证cookie信息是否合法,如果不合法就停止程序运行。攻击者在覆盖返回地址的时候往往也会将cookie信息给覆盖掉,导致栈保护检查失败而阻止shellcode的执行。在Linux中我们将cookie信息称为canary。

2.NX/DEP(堆栈不可执行)

NX即No-eXecute(不可执行)的意思,NX(DEP)的基本原理是将数据所在内存页标识为不可执行,当程序溢出成功转入shellcode时,程序会尝试在数据页面上执行指令,此时CPU就会抛出异常,而不是去执行恶意指令。

3.PIE/ASLR(地址随机化)

4.Fortify

这个保护机制查了很久都没有个很好的汉语形容,根据我的理解它其实和栈保护都是gcc的新的为了增强保护的一种机制,防止缓冲区溢出攻击。由于并不是太常见,也没有太多的了解。

5.RelRO

设置符号重定向表格为只读或在程序启动时就解析并绑定所有动态符号,从而减少对GOT(Global Offset Table)攻击。

0x02 参考

checksec及其包含的保护机制

时间: 2024-11-06 14:23:21

二进制的保护机制的相关文章

linux程序的常用保护机制

linux程序的常用保护机制 来源 https://www.cnblogs.com/Spider-spiders/p/8798628.html 操作系统提供了许多安全机制来尝试降低或阻止缓冲区溢出攻击带来的安全风险,包括DEP.ASLR等.在编写漏洞利用代码的时候,需要特别注意目标进程是否开启了DEP(Linux下对应NX).ASLR(Linux下对应PIE)等机制,例如存在DEP(NX)的话就不能直接执行栈上的数据,存在ASLR的话各个系统调用的地址就是随机化的. 一.checksec che

【安全健行】(6):Windows漏洞保护机制

2015/5/21 11:07:55 之前我们一直在Linux平台上分析漏洞,那是因为对于绝大多数Hacker获得一个Linux平台更加容易,而且主流的服务器系统基本也都是Linux/Unix的:另外一个好处就是Linux提供了用户自定义的强大功能,我们可以根据需要编译汇编程序代码,关闭相应的安全保护机制,便于我们的研究学习. 然而现实中有影响力的漏洞大多是基于Windows系统,因此这节我们来介绍下Winodws系统上是安全保护机制,至于Windows上的漏洞分析,我们会在之后的恶意代码分析章

各种保护机制绕过手法

一.绕过GS编译选项 ●原理:通过VC++编译器在函数前后添加额外的处理代码,前部分用于由伪随机数生成的cookie并放入.data节段,当本地变量初始化,就会向栈中插入cookie,它位于局部变量和返回地址之间 ●绕过方法: 1.猜测/计算cookie Reducing the Effective Entropy of GS Cookies:http://www.uninformed.org/?v=7&a=2&t=html 至从覆盖SEH的方法出现后,这种方法目前已基本不用了,它没有后面

Android中的软件安全和逆向分析[二]—apk反破解技术与安全保护机制

在Android应用开发中,当我们开发完软件之后,我们不希望别人能够反编译破解我们的应用程序,不能修改我们的代码逻辑.实际上,在应用程序的安全机制考虑中,我们希望自己的应用程序安全性高,通过各种加密操作等来增大竞争对手的反编译破解成本.设想,竞争对手开发一个同样的应用程序需要10天,而破解我们的软件程序需要100天,那么势必会打消黑客程序员破解我们应用程序的念头.如何增加对手的破解成本,就需要考验我们应用程序的安全性有多高,加密技术有多强.一个优秀的应用程序,不仅能为用户带来利益,同时也能保护自

GCC中的堆栈保护机制

以堆栈溢出为代表的缓冲区溢出已成为最为普遍的安全漏洞,由此引发的安全问题比比皆是.我们知道攻击者利用堆栈溢出漏洞时,通常会破坏当前的函数栈.在gcc中,通过编译选项可以添加 函数栈的保护机制,通过重新对局部变量进行布局来实现,达到监测函数栈是否非破坏的目的. gcc中有3个与堆栈保护相关的编译选项 -fstack-protector:启用堆栈保护,不过只为局部变量中含有 char 数组的函数插入保护代码. -fstack-protector-all:启用堆栈保护,为所有函数插入保护代码. -fn

CPU保护机制

如果程序可以直接跟内核交互,那么操作系统会变的不稳定.因此有一个机制会讲内核和程序隔开. 一般的CPU有4层保护机制. 第0环,特权级别.只有内核才能运行到第0级别, 最外环,其他程序运行. 所以在内存上也是这样 CPU保护机制

操作系统学习(七) 、保护机制概述

保护机制是可靠运行多任务环境所必须的.它可以用于保护各个任务免受互相之间的干扰.在软件开发的任何阶段都可以使用段级和页级保护来协助寻找和检测设计问题和错误.当程序对错误内存空间执行了一次非期望的引用,保护机制可以阻止这种操作并且报告此类事件. 保护机制可以被用于分段和分页机制.处理器寄存器的2个比特位定义了当前执行程序的特权级,称为当前特权级CPL.在分段和分页地址转换过程中,处理器将对CPL进行验证. 通过设置控制寄存器CR0的PE标志(位0)可以让处理器工作在保护模式下,从而也就开启了分段保

Hystrix针对不可用服务的保护机制以及引入缓存

之前我写过一篇博文,通过案例了解Hystrix的各种基本使用方式,在这篇文章里,我们是通过Hystrix调用正常工作的服务,也就是说,Hytrix的保护机制并没有起作用,这里我们将在HystrixProtectDemo.java里演示调用不可用的服务时,hystrix启动保护机制的流程.这个类是基于NormalHystrixDemo.java改写的,只是在其中增加了getFallback方法,代码如下. 1 //省略必要的package和import代码 2 public class Hystr

Linux中的保护机制

Linux中的保护机制 在编写漏洞利用代码的时候,需要特别注意目标进程是否开启了NX.PIE等机制,例如存在NX的话就不能直接执行栈上的数据,存在PIE 的话各个系统调用的地址就是随机化的. 一:canary(栈保护) 栈溢出保护是一种缓冲区溢出攻击缓解手段,当函数存在缓冲区溢出攻击漏洞时,攻击者可以覆盖栈上的返回地址来让shellcode能够得到执行.当启用栈保护后,函数开始执行的时候会先往栈里插入cookie信息,当函数真正返回的时候会验证cookie信息是否合法,如果不合法就停止程序运行.