一行代码就能解决的算法题

下文是我在 LeetCode 刷题过程中总结的三道有趣的「脑筋急转弯」题目,可以使用算法编程解决,但只要稍加思考,就能找到规律,直接想出答案。

一、Nim 游戏

游戏规则是这样的:你和你的朋友面前有一堆石子,你们轮流拿,一次至少拿一颗,最多拿三颗,谁拿走最后一颗石子谁获胜。

假设你们都很聪明,由你第一个开始拿,请你写一个算法,输入一个正整数 n,返回你是否能赢(true 或 false)。

比如现在有 4 颗石子,算法应该返回 false。因为无论你拿 1 颗 2 颗还是 3 颗,对方都能一次性拿完,拿走最后一颗石子,所以你一定会输。

首先,这道题肯定可以使用动态规划,因为显然原问题存在子问题,且子问题存在重复。但是因为你们都很聪明,涉及到你和对手的博弈,动态规划会比较复杂。

我们解决这种问题的思路一般都是反着思考

如果我能赢,那么最后轮到我取石子的时候必须要剩下 1~3 颗石子,这样我才能一把拿完。

如何营造这样的一个局面呢?显然,如果对手拿的时候只剩 4 颗石子,那么无论他怎么拿,总会剩下 1~3 颗石子,我就能赢。

如何逼迫对手面对 4 颗石子呢?要想办法,让我选择的时候还有 5~7 颗石子,这样的话我就有把握让对方不得不面对 4 颗石子。

如何营造 5~7 颗石子的局面呢?让对手面对 8 颗石子,无论他怎么拿,都会给我剩下 5~7 颗,我就能赢。

这样一直循环下去,我们发现只要踩到 4 的倍数,就落入了圈套,永远逃不出 4 的倍数,而且一定会输。所以这道题的解法非常简单:

bool canWinNim(int n) {
    // 如果上来就踩到 4 的倍数,那就认输吧
    // 否则,可以把对方控制在 4 的倍数,必胜
    return n % 4 != 0;
}

二、石头游戏

游戏规则是这样的:你和你的朋友面前有一排石头堆,用一个数组 piles 表示,piles[i] 表示第 i 堆石子有多少个。你们轮流拿石头,一次拿一堆,但是只能拿走最左边或者最右边的石头堆。所有石头被拿完后,谁拥有的石头多,谁获胜。

假设你们都很聪明,由你第一个开始拿,请你写一个算法,输入一个数组 piles,返回你是否能赢(true 或 false)。

注意,石头的堆的数量为偶数,所以你们两人拿走的堆数一定是相同的。石头的总数为奇数,也就是你们最后不可能拥有相同多的石头,一定有胜负之分。

举个例子,piles=[2, 1, 9, 5],你先拿,可以拿 2 或者 5,你选择 2。

piles=[1, 9, 5],轮到对手,可以拿 1 或 5,他选择 5。

piles=[1, 9] 轮到你拿,你拿 9。

最后,你的对手只能拿 1 了。

这样下来,你总共拥有 \(2 + 9 = 11\) 颗石头,对手有 \(5 + 1 = 6\) 颗石头,你是可以赢的,所以算法应该返回 true。

你看到了,并不是简单的挑数字大的选,为什么第一次选择 2 而不是 5 呢?因为 5 后面是 9,你要是贪图一时的利益,就把 9 这堆石头暴露给对手了,那你就要输了。

这也是强调双方都很聪明的原因,算法也是求最优决策过程下你是否能赢。

这道题又涉及到两人的博弈,也可以用动态规划算法暴力试,比较麻烦。但我们只要对规则深入思考,就会大惊失色:只要你足够聪明,你是必胜无疑的,因为你是先手。

boolean stoneGame(int[] piles) {
    return true;
}

这是为什么呢,因为题目有两个条件很重要:一是石头总共有偶数堆,石头的总数是奇数。这两个看似增加游戏公平性的条件,反而使该游戏成为了一个割韭菜游戏。我们以 piles=[2, 1, 9, 5] 讲解,假设这四堆石头从左到右的索引分别是 1,2,3,4。

如果我们把这四堆石头按索引的奇偶分为两组,即第 1、3 堆和第 2、4 堆,那么这两组石头的数量一定不同,也就是说一堆多一堆少。因为石头的总数是奇数,不能被平分。

而作为第一个拿石头的人,你可以控制自己拿到所有偶数堆,或者所有的奇数堆。

你最开始可以选择第 1 堆或第 4 堆。如果你想要偶数堆,你就拿第 4 堆,这样留给对手的选择只有第 1、3 堆,他不管怎么拿,第 2 堆又会暴露出来,你就可以拿。同理,如果你想拿奇数堆,你就拿第 1 堆,留给对手的只有第 2、4 堆,他不管怎么拿,第 3 堆又给你暴露出来了。

也就是说,你可以在第一步就观察好,奇数堆的石头总数多,还是偶数堆的石头总数多,然后步步为营,就一切尽在掌控之中了。知道了这个漏洞,可以整一整不知情的同学了。

三、电灯开关问题

这个问题是这样描述的:有 n 盏电灯,最开始时都是关着的。现在要进行 n 轮操作:

第 1 轮操作是把每一盏电灯的开关按一下(全部打开)。

第 2 轮操作是把每两盏灯的开关按一下(就是按第 2,4,6... 盏灯的开关,它们被关闭)。

第 3 轮操作是把每三盏灯的开关按一下(就是按第 3,6,9... 盏灯的开关,有的被关闭,比如 3,有的被打开,比如 6)...

如此往复,直到第 n 轮,即只按一下第 n 盏灯的开关。

现在给你输入一个正整数 n 代表电灯的个数,问你经过 n 轮操作后,这些电灯有多少盏是亮的?

我们当然可以用一个布尔数组表示这些灯的开关情况,然后模拟这些操作过程,最后去数一下就能出结果。但是这样显得没有灵性,最好的解法是这样的:

int bulbSwitch(int n) {
    return (int)Math.sqrt(n);
}

什么?这个问题跟平方根有什么关系?其实这个解法挺精妙,如果没人告诉你解法,还真不好想明白。

首先,因为电灯一开始都是关闭的,所以某一盏灯最后如果是点亮的,必然要被按奇数次开关。

我们假设只有 6 盏灯,而且我们只看第 6 盏灯。需要进行 6 轮操作对吧,请问对于第 6 盏灯,会被按下几次开关呢?这不难得出,第 1 轮会被按,第 2 轮,第 3 轮,第 6 轮都会被按。

为什么第 1、2、3、6 轮会被按呢?因为 \(6=1\times6=2\times3\)。一般情况下,因子都是成对出现的,也就是说开关被按的次数一般是偶数次。但是有特殊情况,比如说总共有 16 盏灯,那么第 16 盏灯会被按几次?

\(16=1\times16=2\times8=4\times4\)

其中因子 4 重复出现,所以第 16 盏灯会被按 5 次,奇数次。现在你应该理解这个问题为什么和平方根有关了吧?

不过,我们不是要算最后有几盏灯亮着吗,这样直接平方根一下是啥意思呢?稍微思考一下就能理解了。

就假设现在总共有 16 盏灯,我们求 16 的平方根,等于 4,这就说明最后会有 4 盏灯亮着,它们分别是第 \(1\times1=1\) 盏、第 \(2\times2=4\) 盏、第 \(3\times3=9\) 盏和第 \(4\times4=16\) 盏。

就算有的 n 平方根结果是小数,强转成 int 型,也相当于一个最大整数上界,比这个上界小的所有整数,平方后的索引都是最后亮着的灯的索引。所以说我们直接把平方根转成整数,就是这个问题的答案。

我最近精心制作了一份电子书《labuladong的算法小抄》,分为【动态规划】【数据结构】【算法思维】【高频面试】四个章节,共 60 多篇原创文章,绝对精品!限时开放下载,在我的公众号 labuladong 后台回复关键词【pdf】即可免费下载!

欢迎关注我的公众号 labuladong,技术公众号的清流,坚持原创,致力于把问题讲清楚!

原文地址:https://www.cnblogs.com/labuladong/p/12320492.html

时间: 2024-10-08 23:29:38

一行代码就能解决的算法题的相关文章

牛逼!一行代码居然能解决这么多曾经困扰我半天的算法题

春节假期这么长,干啥最好?当然是折腾一些算法题了,下面给大家讲几道一行代码就能解决的算法题,当然,我相信这些算法题你都做过,不过就算做过,也是可以看一看滴,毕竟,你当初大概率不是一行代码解决的. 学会了一行代码解决,以后遇到面试官问起的话,就可以装逼了. 一.2 的幂次方 问题描述:判断一个整数 n 是否为 2 的幂次方 对于这道题,常规操作是不断这把这个数除以 2,然后判断是否有余数,直到 n 被整除成 1 . 我们可以把 n 拆成二进制看待处理的,如果 n 是 2 的幂次方的话,那么 n 的

通过位运算来解决一些算法题

在刷pat的1073 多选题常见计分法题目时,发现如果需要判断每一个学生对应每道题的多选题是否错选,漏选,以及选对是比较麻烦的一件事,因为这涉及到两个集合的判断,判断一个集合是否是另一个集合的子集(即漏选,得一半的分),或者说两个集合是否完全相等(即题目得满分). 刚开始通过set容器来保存每一道题的正确答案,以及学生选择的答案,然后比较两个集合的大小,大小一致则for循环判断每一个元素是否都存在.结果发现这种思路过于复杂,且易超时. 联想到每一个选项是否一致,可以通过异或运算判断两个集合,如果

一道有趣的算法题。。。

题目意思: 用1, 2, 3 ,4 ,5, 6, 7, 8, 9 组成3个三位数 abc, def 和 ghi, 每个数字恰好使用一次,要求abc:def:ghi = 1:2:3.输出所有解. 分析: 模拟所有三位数,判断条件有二: 一.i(abc):j(def):k(ghi)=1:2:3 二.判断是否出现的1~9之间的所有数字 代码: /** *一道有趣的算法题 * */ #include<iostream> #include<cstdio> using namespace st

常见算法题合辑(一)

这一章的内容,有些之前已经在微信公众号中将详细的思路及步骤汇总过,有些之后可能会再找时间对其进行分析,这里只将最终实现罗列出来,难易程度不分先后,算法复杂度不保证是最优,留给大家空间自行思考,当然,本章用的是C#语言进行编码,大家可以使用自己熟悉的语言将这些算法实现一遍哦~ 如果你有什么有趣的算法题或者没能解决的算法题,也可以留言给小编,让我们一起玩转算法~ 1. 冒泡排序 这个算是所有算法中最为简单的了,实现方法如下: 2. 插入排序 从排序算法来看,这个算法也是属于比较简单的了,实现方法如下

每天刷个算法题20160526:BFS解决八数码问题(九宫格问题)

版权所有.所有权利保留. 欢迎转载,转载时请注明出处: http://blog.csdn.net/xiaofei_it/article/details/51524864 为了防止思维僵化,每天刷个算法题.已经刷了几天了,现在发点代码. 我已经建了一个开源项目,每天的题目都在里面: https://github.com/Xiaofei-it/Algorithms 绝大部分算法都是我自己写的,没有参考网上通用代码.读者可能会觉得有的代码晦涩难懂,因为那是我自己的理解. 最近几天都是在写一些原来的东西

一行代码解决IE兼容性问题

在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 <!Doctype html><html xmlns=http://www.w3.org/1999/xhtml xmlns:bd=http://www.baidu.com/2010/xbdml>;<head><meta http-equiv=Content-Type content="text/h

一行代码解决各种IE兼容问题,IE6,IE7,IE8,IE9,IE10 http://www.jb51.net/css/383986.html

在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 复制代码 代码如下: <!Doctype html> <html xmlns=http://www.w3.org/1999/xhtml xmlns:bd=http://www.baidu.com/2010/xbdml>; <head> <meta http-equiv=Content-Type conten

怎么用一行代码解决CSS各种IE各种兼容问题

用一行代码来解决CSS在,IE6,IE7,IE8,IE9,IE10 中的各种兼容性问题. 在网站前端写代码的过程中,很多时间IE各个版本的兼容问题很难整.现在百度与谷歌都有了一行解决这种兼容性的代码了.如下面的. 办法一 百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 1 <!Doctype html> 2 <htmlxmlns=http://www.w3.org/1999/xhtmlxmlns:bd=http://www.baidu.com/2010/xbdml> 3 

一行代码解决各种IE兼容问题,IE6,IE7,IE8,IE9,IE10

在网站开发中不免因为各种兼容问题苦恼,针对兼容问题,其实IE给出了解决方案Google也给出了解决方案百度也应用了这种方案去解决IE的兼容问题 百度源代码如下 <!Doctype html><html xmlns=http://www.w3.org/1999/xhtml xmlns:bd=http://www.baidu.com/2010/xbdml>;<head><meta http-equiv=Content-Type content=“text/html;c