MMU理解

MMU,全称Memory Manage Unit, 中文名——存储器管理单元。

许多年以前,当人们还在使用DOS或是更古老的操作系统的时候,计算机的内存还非常小,一般都是以K为单位进行计算,相应的,当时的程序规模也不大,所以
内存容量虽然小,但还是可以容纳当时的程序。但随着图形界面的兴起还用用户需求的不断增大,应用程序的规模也随之膨胀起来,终于一个难题出现在程序员的面
前,那就是应用程序太大以至于内存容纳不下该程序,通常解决的办法是把程序分割成许多称为覆盖块(overlay)的片段。覆盖块0首先运行,结束时他将调用另一个覆盖块。虽然覆盖块的交换是由OS完成的,但是必须先由程序员把程序先进行分割,这是一个费时费力的工作,而且相当枯燥。人们必须找到更好的办法从根本上解决这个问题。不久人们找到了一个办法,这就是虚拟存储器(virtual memory).虚拟存储器的基本思想是程序,数据,堆栈的总的大小可以超过物理存储器的大小,操作系统把当前使用的部分保留在内存中,而把其他未被使用的部分保存在磁盘上。

比如对一个16MB的程序和一个内存只有4MB的机器,OS通过选择,可以决定各个时刻将哪4M的内容保留在内存中,并在需要时在内存和磁盘间交换程序片
段,这样就可以把这个16M的程序运行在一个只具有4M内存机器上了。而这个16M的程序在运行前不必由程序员进行分割。    任何时候,计算机上都存在一个程序能够产生的地址集合,我们称之为地址范围。
这个范围的大小由CPU的位数决定,例如一个32位的CPU,它的地址范围是0~0xFFFFFFFF
(4G),而对于一个64位的CPU,它的地址范围为0~0xFFFFFFFFFFFFFFFF
(64T).这个范围就是我们的程序能够产生的地址范围,我们把这个地址范围称为虚拟地址空间,该空间中的某一个地址我们称之为虚拟地址。与虚拟地址空间和虚拟地址相对应的则是物理地址空间和物理地址,大多数时候我们的系统所具备的物理地址空间只是虚拟地址空间的一个子集,这里举一个最简单的例子直观地说明这两者,对于一台内存为256MB的32bit x86主机来说,它的虚拟地址空间范围是0~0xFFFFFFFF(4G),而物理地址空间范围是0x000000000~0x0FFFFFFF(256MB)。   
在没有使用虚拟存储器的机器上,虚拟地址被直接送到内存总线上,使具有相同地址的物理存储器被读写。而在使用了虚拟存储器的情况下,虚拟地址不是被直接送
到内存地址总线上,而是送到内存管理单元——MMU(主角终于出现了:])。他由一个或一组芯片组成,一般存在与协处理器中,其功能是把虚拟地址映射为物
理地址。     大多数使用虚拟存储器的系统都使用一种称为分页(paging)。虚拟地址空间划分成称为页(page)的单位,而相应的物理地址空间也被进行划分,单位是页框(frame).页和页框的大小必须相同。接下来配合图片我以一个例子说明页与页框之间在MMU的调度下是如何进行映射的

在这个例子中我们有一台可以生成16位地址的机器,它的虚拟地址范围从0x0000~0xFFFF(64K),而这台机器只有32K的物理地址,因此他可以运行64K的程序,但该程序不能一次性调入内存运行。这台机器必须有一个达到可以存放64K程序的外部存储器(例如磁盘或是FLASH),以保证程序片段在需要时可以被调用。在这个例子中,页的大小为4K,页框大小与页相同(这点是必须保证的,内存和外围存储器之间的传输总是以页为单位的),对应64K的虚拟地址和32K的物理存储器,他们分别包含了16个页和8个页框。     我们先根据上图解释一下分页后要用到的几个术语,在上面我们已经接触了页和页框,上图中绿色部分是物理空间,其中每一格表示一个物理页框。橘黄色部分是虚拟空间,每一格表示一个页,它由两部分组成,分别是Frame Index(页框索引)和位p(present 存在位),Frame Index的意义很明显,它指出本页是往哪个物理页框进行映射的,位p的意义则是指出本页的映射是否有效,如上图,当某个页并没有被映射时(或称“映射无效”,Frame Index部分为X),该位为0,映射有效则该位为1。我们执行下面这些指令(本例子的指令不针对任何特定机型,都是伪指令)例1:MOVE REG,0 //将0号地址的值传递进寄存器REG.虚
拟地址0将被送往MMU,MMU看到该虚地址落在页0范围内(页0范围是0到4095),从上图我们看到页0所对应(映射)的页框为2(页框2的地址范围
是8192到12287),因此MMU将该虚拟地址转化为物理地址8192,并把地址8192送到地址总线上。内存对MMU的映射一无所知,它只看到一个
对地址8192的读请求并执行它。MMU从而把0到4096的虚拟地址映射到8192到12287的物理地址。例2:MOVE REG,8192被转换为MOVE REG,24576 因为虚拟地址8192在页2中,而页2被映射到页框6(物理地址从24576到28671)例3:MOVE REG,20500被转换为MOVE REG,12308虚拟地址20500在虚页5(虚拟地址范围是20480到24575)距开头20个字节处,虚页5映射到页框3(页框3的地址范围是 12288到16383),于是被映射到物理地址12288+20=12308。    通过适当的设置MMU,可以把16个虚页隐射到8个页框中的任何一个,但是这个方法并没有有效的解决虚拟地址空间比物理地址空间大的问题。从上图中我们可以看到,我们只有8个页框(物理地址),但我们有16个页(虚拟地址),所以我们只能把16个页中的8个进行有效的映射。我们看看例4会发生什么情况MOV REG,32780    虚拟地址32780落在页8的范围内,从上图总我们看到页8没有被有效的进行映射(该页被打上X),这是又会发生什么?MMU注意到这个页没有被映射,于是通知CPU发生一个缺页故障(page fault).
这种情况下操作系统必须处理这个页故障,它必须从8个物理页框中找到1个当前很少被使用的页框并把该页框的内容写入外围存储器(这个动作被称为page
copy),随后把需要引用的页(例4中是页8)映射到刚才释放的页框中(这个动作称为修改映射关系),然后从新执行产生故障的指令(MOV
REG,32780)。假设操作系统决定释放页框1,那么它将把虚页8装入物理地址的4-8K,并做两处修改:首先把标记虚页1未被映射(原来虚页1是被
影射到页框1的),以使以后任何对虚拟地址4K到8K的访问都引起页故障而使操作系统做出适当的动作(这个动作正是我们现在在讨论的),其次他把虚页8对
应的页框号由X变为1,因此重新执行MOV REG,32780时,MMU将把32780映射为4108。我们大致了解了MMU在我们的机器中扮演了什么角色以及它基本的工作内容是什么,下面我们将举例子说明它究竟是如何工作的(注意,本例中的MMU并无针对某种特定的机型,它是所有MMU工作的一个抽象)。    首先明确一点,MMU的主要工作只有一个,就是把虚拟地址映射到物理地址。我们已经知道,大多数使用虚拟存储器的系统都使用一种称为分页(paging)的技术,就象我们刚才所举的例子,虚拟地址空间被分成大小相同的一组页,每个
页有一个用来标示它的页号(这个页号一般是它在该组中的索引,这点和C/C++中的数组相似)。在上面的例子中0~4K的页号为0,4~8K的页号为1,8~12K的页号为2,以此类推。而虚拟地址(注意:是一个确定的地址,不是一个空间)被MMU分为2个部分,第一部分是页号索引(page Index),第二部分则是相对该页首地址的偏移量(offset)。
我们还是以刚才那个16位机器结合下图进行一个实例说明,该实例中,虚拟地址8196被送进MMU,MMU把它映射成物理地址。16位的CPU总共能产生的地址范围是0~64K,按每页4K的大小计算,该空间必须被分成16个页。而我们的虚拟地址第一部分所能够表达的范围也必须等于16(这样才能索引到该
页组中的每一个页),也就是说这个部分至少需要4个bit。一个页的大小是4K(4096),也就是说偏移部分必须使用12个bit来表示(2^12=
4096,这样才能访问到一个页中的所有地址),8196的二进制码如下图所示:

该地址的页号索引为0010(二进制码),既索引的页为页2,第二部分为000000000100(二进制),偏移量为4。页2中的页框号为6(页2映射
在页框6,见上图),我们看到页框6的物理地址是24~28K。于是MMU计算出虚拟地址8196应该被映射成物理地址24580(页框首地址+偏移量=
24576+4=24580)。同样的,若我们对虚拟地址1026进行读取,1026的二进制码为0000010000000010,page
index=0000=0,offset=010000000010=1026。页号为0,该页映射的页框号为2,页框2的物理地址范围是
8192~12287,故MMU将虚拟地址1026映射为物理地址9218(页框首地址+偏移量=8192+1026=9218)    以上就是MMU的工作过程。
下面我们针对s3c2410的MMU(注1)进行讲解。
S3c2410总共有4种内存映射方式,分别是:

    • Fault (无映射)
    • Coarse Page (粗表)
    • Section (段)
    • Fine Page (细表)
      我们以Section(段)进行说明。
      ARM920T是一个32bit的CPU,它的虚拟地址空间为2^32=4G。而在Section模式,这4G的虚拟空间被分成一个一个称为段
      (Section)的单位(与我们上面讲的页在本质上其实是一致的),每个段的长度是1M
      (而我们之前所使用的页的长度是4K)。4G的虚拟内存总共可以被分成4096个段(1M*4096=4G),因此我们必须用4096个描述符来对这组段
      进行描述,每个描述符占用4个Byte,故这组描述符的大小为16KB
      (4K*4096),这4096个描述符构为一个表格,我们称其为Tralaton Table.

上图是描述符的结构
Section base address:段基地址(相当于页框号首地址)
AP: 访问控制位Access Permission
Domain: 访问控制寄存器的索引。Domain与AP配合使用,对访问权限进行检查
C:当C被置1时为write-through (WT)模式
B: 当B被置1时为write-back (WB)模式
(C,B两个位在同一时刻只能有一个被置1)
下面是s3c2410内存映射后的一个示意图:

我的s3c2410上配置的SDRSAM大小为64M,该SDRAM的物理地址范围是0x3000 0000~0x33FF FFFF(属于Bank 6),由于1个Section的大小是1M,所以该物理空间可以被分成64个物理段(页框).
    在Section模式下,送进MMU的虚拟地址
被分为两部分(这点和我们上面举的例子是一样的),这两部分为 Descriptor Index(相当于上面例子的Page Index)和
Offset,descript index长度为12bit(2^12=4096,从这个关系式你能看出什么?:)
),Offset长度为20bit(2^20=1M,你又能看出什么?:)).观察一下一个描述符(Descriptor)中的Section
Base Address部分,它长度为12
bit,里面的值是该虚拟段(页)映射成的物理段(页框)的物理地址前12bit,由于每一个物理段的长度都是1M,所以物理段首地址的后20bit总是
为0x00000(每个Section都是以1M对齐),确定一个物理地址的方法是 物理页框基地址+虚拟地址中的偏移部分=Section Base Address
代码
void mem_mapping_linear(void)   {       unsigned long descriptor_index, section_base, sdram_base, sdram_size;       sdram_base=0x30000000;       sdram_size=0x 4000000;       for (section _base= sdram_base,descriptor_index = section _base>>20;            section _base         descriptor_index+=1;section _base +=0x100000)       {            *(mmu_tlb_base + (descriptor_index)) = (section _base>>20) | MMU_OTHER_SECDESC;       }   }  
    上面的这段段代码把虚拟空间0x3000 0000~0x33FF FFFF映射到物理空间0x3000 0000~0x33FF FFFF,由于虚拟空间与物理空间空间相吻合,所以虚拟地址与他们各自对应的物理地址在值上是一致的。当初始完Translation Table之后,记得要把Translation Table的首地址(第0号描述符的地址)加载进协处理器CP15的Control Register2(2号控制寄存器)中,该控制寄存器的名称叫做Translation table base (TTB) register。
    以上讨论的是descriptor中的Section Base Address以及虚拟地址和物理地址的映射关系,然而MMU还有一个重要的功能,那就是访问控制机制(Access Permission )
    简单说访问控制机制就是CPU通过某种方法判断当前程序对内存的访问是否合法(是否有权限对该内存进行访问),如果当前的程序并没有权限对即将访问的内存区域进行操作,则CPU将引发一个异常,s3c2410称该异常为Permission fault,x86
架构则把这种异常称之为通用保护异常(General Protection),什么情况会引起Permission
fault呢?比如处于User级别的程序要对一个System级别的内存区域进行写操作,这种操作是越权的,应该引起一个Permission
fault,搞过x86架构的朋友应该听过保护模式(Protection Mode),保护模式就是基于这种思想进行工作的,于是我们也可以这么说:s3c2410的访问控制机制其实就是一种保护机制。那s3c2410的访问控制机制到底是由什么元素去参与完成的呢?它们间是怎么协调工作的呢?这些元素总共有:

    • 协处理器CP15中Control Register3:DOMAIN ACCESS CONTROL REGISTER
    • 段描述符中的AP位和Domain位
    • 协处理器CP15中Control Register1(控制寄存器1)中的S bit和R bit
    • 协处理器CP15中Control Register5(控制寄存器5)
    • 协处理器CP15中Control Register6(控制寄存器6)
          DOMAIN ACCESS CONTROL REGISTER 是访问控制寄存器,该寄存器有效位为32,被分成16个区域,每个区域由两个位组成,他们说明了当前内存的访问权限检查的级别,如下图所示:

每区域可以填写的值有4个,分别为00,01,10,11(二进制),他们的意义如下所示:

00:当前级别下,该内存区域不允许被访问,任何的访问都会引起一个domain fault
01:当前级别下,该内存区域的访问必须配合该内存区域的段描述符中AP位进行权检查
10:保留状态(我们最好不要填写该值,以免引起不能确定的问题)
11:当前级别下,对该内存区域的访问都不进行权限检查。
   
我们再来看看discriptor中的Domain区域,该区域总共有4个bit,里面的值是对DOMAIN ACCESS CONTROL
REGISTER中16个区域的索引.而AP位配合S bit和A bit对当前描述符描述的内存区域被访问权限的说明,他们的配合关系如下图所示:

AP位也是有四个值,我结合实例对其进行说明.
在下面的例子中,我们的DOMAIN ACCESS CONTROL REGISTER都被初始化成0xFFFF BDCF,如下图所示:

例1:Discriptor 中的domain=4,AP=10(这种情况下S bit ,A bit 被忽略)
假设现在我要对该描述符描述的内存区域进行访问:
由于domain=4,而DOMAIN ACCESS CONTROL REGISTER中field 4的值是01,系统会对该访问进行访问权限的检查。
假设当前CPU处于Supervisor模式下,则程序可以对该描述符描述的内存区域进行读写操作。
假设当前CPU处于User模式下,则程序可以对该描述符描述的内存进行读访问,若对其进行写操作则引起一个permission fault.
例2:Discriptor 中的domain=0,AP=10(这种情况下S bit ,A bit 被忽略)
domain=0,而DOMAIN ACCESS CONTROL REGISTER中field 0的值是11,系统对任何内存区域的访问都不进行访问权限的检查。
由于统对任何内存区域的访问都不进行访问权限的检查,所以无论CPU处于合种模式下(Supervisor模式或是User模式),程序对该描述符描述的内存都可以顺利地进行读写操作
例3:Discriptor 中的domain=4,AP=11(这种情况下S bit ,A bit 被忽略)
由于domain=4,而DOMAIN ACCESS CONTROL REGISTER中field 4的值是01,系统会对该访问进行访问权限的检查。
由于AP=11,所以无论CPU处于合种模式下(Supervisor模式或是User模式),程序对该描述符描述的内存都可以顺利地进行读写操作
例4:Discriptor 中的domain=4,AP=00, S bit=0,A bit=0
由于domain=4,而DOMAIN ACCESS CONTROL REGISTER中field 4的值是01,系统会对该访问进行访问权限的检查。
由于AP=00,S bit=0,A bit=0,所以无论CPU处于合种模式下(Supervisor模式或是User模式),程序对该描述符描述的内存都只能进行读操作,否则引起permission fault.
通过以上4个例子我们得出两个结论:
1.对某个内存区域的访问是否需要进行权限检查是由该内存区域的描述符中的Domain域决定的。
2.某个内存区域的访问权限是由该内存区域的描述符中的AP位和协处理器CP15中Control Register1(控制寄存器1)中的S bit和R bit所决定的。
关于访问控制机制我们就讲到这里.
注1:对于s3c2410来说,送进MMU的地址准确讲是一个Modify Visual Address(MVA),这个地址是Virtual Address的一个变换,我将在以后谈论到进程切换的时候中向大家介绍MVA

时间: 2024-10-06 12:46:41

MMU理解的相关文章

对MMU段式转换的理解

本文将详细介绍MMU段式转换的过程,并在文末附上一篇讲MMU比较详细的文章.具体什么是MMU,什么时段是转换就不在本文讲了,直接戳文末的链接. 首先,进行段式转换的条件.我们要拥有一个虚拟地址,还有一级页表,这个一级页表一般是工程师在代码中建立起来的.每一个虚拟地址在这个一级页表中都有对应的表项.我们只需要知道一级页表的基地址,再将虚拟地址的高12位作为偏移,就可以找到该虚拟地址的表项了.从这里就可以看出,前12位相同的虚拟地址们在一级页表中其实都是共用同一个表项的.举个例子:0x5600000

ARM中MMU地址转换理解

首先,我们要分清ARM CPU上的三个地址:虚拟地址(VA,Virtual Address).变换后的虚拟地址(MVA,Modified Virtual Address).物理地址(PA,Physical Address) 启动MMU后,CPU核对外发出虚拟地址VA,VA被转换为MVA供MMU使用,在这里MVA被转换为PA:最后通过PA读写实际设备 MMU的作用就是负责虚拟地址(virtual address)转化成物理地址(physical address). 32位的CPU的虚拟地址空间达到

ARM学习篇 SDRAM理解

1.SDRAM单管存储单元 SDRAM单管电路图 C记忆单元 T控制门管 Z字线 W位线 注:图示为N沟道耗尽型MOS管 写入:Z加高电平,MOS导通,W状态决定了电容C的状态 读出:Z加高电平,MOS导通,可以从W状态得知C的状态 保持:Z加低电平,MOS关闭,电容保持原状态 注意:单管读出是破坏性读出,因为读出时电容充电或者放电了,所以读出后还要重写 2.      刷新与重写  ●  刷新是每隔一段时间,自动重写一次:重写是破坏性读出后立即还原 最大刷新间隔:所有的动态单元都被重新刷一遍的

u-boot分析(五)----I/D cache失效|关闭MMU和cache|关闭看门狗

u-boot分析(五) 上篇博文我们按照210的启动流程,对u-boot启动中的设置异常向量表,设置SVC模式进行了分析,今天我们继续按照u-boot的启动流程对以下内容进行分析. 今天我们会用到的文档: Arm9内核手册:http://download.csdn.net/detail/wrjvszq/8358867 Arm11内核手册:http://download.csdn.net/detail/wrjvszq/8358877 Arm a8内核手册:http://download.csdn.

ARM9的MMU

一 页表 1. 页表是放置在RAM(一般为DRAM)中的一个数据段. 2. ARM的地址空间为2^32字节,即4G字节. 3. 一级页表总共有4096条记录,每条记录对应的地址块为1M,一级页表中的记录将虚拟的连续4G寻址空间等分. 4. 一级页表中的每条记录的内容就是虚拟的4G寻址空间的物理地址,举例如下: a. 将一级页表基址设置为:0x31000000,则从基址开始,之后的4096 * 4字节对应一级页表. b. 一级页表的第0条记录对应着虚拟地址的0x0000,0000~0x000F,F

MMU讲解

MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制的内存访问授权,多用户多进程操作系统. 1.历史 许多年以前,当人们还在使用DOS或是更古老的操作系统的时候,计算机的内存还非常小,一般都是以K为单位进行计算,相应的,当时的程序规模也不大,所以内存容量虽然小,但还是可以容纳当时的程序.但随着图形界面的兴起还有用户需求的不断增大,应用程序的规模也随之

命题作文:在一棵IPv4地址树中彻底理解IP路由表的各种查找过程

这是一篇命题作文.近期一直想写点东西,但一直找不到题目.正好收到一封邮件,有人问我Linux路由表的布局问题以及路由缓存的问题,加之前些日子又帮人做了一个片上路由表,所以认为这是个好题目,索性花了多半个周末的时间,奋笔疾书. 前面的套话 不写命题作文已经11年了.最后一次是在高考的考场上. 收到邮件时,被人要求写这样的命题作文,其实我是拒绝的,由于你不能叫我写我就立即去写,首先我自己得懂这个.我又不能说到了写完了的时候贴了非常多baidu出来的图片,说了非常多套话,人家一看就知道我这是转载或者翻

句柄的理解

句柄的理解:(下面文章认真看!有关于MMU的知识) 简单汇总几点: 1.句柄就类似文件操作中的文件流,通过句柄可以对数据库进行操作: 2.当程序运行后,各个对象驻留在内存中,如果获得这个内存的首地址,我们也不一定能正确访问它的值: 为什么呢? 由于linux/windows都是以虚拟内存为基础的,各个对象地址始终再发生变化,因此我们直接通过原来的地址,是不能正确访问到对象值: 借助句柄(类似一个二级指针), 句柄的地址稳定不变,一级指针保存对象的地址,这个一级指针单元不稳定,用二级指针(句柄)来

深入理解计算机系统笔记

我的博客上的比这个排版显示的更好一些,特别是图片 http://notelzg.github.io/2016/06/29/%E6%B7%B1%E5%85%A5%E7%90%86%E8%A7%A3%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%E7%BB%9F%E6%80%BB%E7%BB%93/ 1. hello wordl 我们还是从hello world程序说起吧: #include <stdio.h> int main() { printf("hell