本期内容:
1 解密Spark Streaming Job架构和运行机制
2 解密Spark Streaming 容错架构和运行机制
- 一切不能进行实时流处理的数据都是无效的数据。在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下。
Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序。如果可以掌握Spark streaming这个复杂的应用程序,那么其他的再复杂的应用程序都不在话下了。这里选择Spark Streaming作为版本定制的切入点也是大势所趋。
本节课通过从job和容错的整体架构上来考察Spark Streaming的运行机制。
第一部分通过案例透视Job的执行过程,案例代码如下:
object OnlineForeachRDD2DB { def main(args: Array[String]){ /* * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息 */ val conf = new SparkConf() //创建SparkConf对象 conf.setAppName("OnlineForeachRDD") //设置应用程序的名称 // conf.setMaster("spark://Master:7077") //此时,程序在Spark集群 conf.setMaster("local[6]") //设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口 val ssc = new StreamingContext(conf, Seconds(5)) val lines = ssc.socketTextStream("Master", 9999) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _) wordCounts.foreachRDD { rdd => rdd.foreachPartition { partitionOfRecords => { // ConnectionPool is a static, lazily initialized pool of connections val connection = ConnectionPool.getConnection() partitionOfRecords.foreach(record => { val sql = "insert into streaming_itemcount(item,count) values(‘" + record._1 + "‘," + record._2 + ")" val stmt = connection.createStatement(); stmt.executeUpdate(sql); }) ConnectionPool.returnConnection(connection) // return to the pool for future reuse } } } ssc.start() ssc.awaitTermination() } }
案例解析
在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法
1.JobGenerator启动后会不断的根据batchDuration生成一个个的Job
2.ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过ReceivedBlockTracker来管理接受到的元数据信息
每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行)。
为什么使用线程池呢?
1.作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
2.有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持。
第二部分:从容错架构的角度透视Spark Streaming
我们知道DStream与RDD的关系就是随着时间流逝不断的产生RDD,对DStream的操作就是在固定时间上操作RDD。所以从某种意义上而言,Spark Streaming的基于DStream的容错机制,实际上就是划分到每一次形成的RDD的容错机制,这也是Spark Streaming的高明之处。
RDD作为 分布式弹性数据集,它的弹性主要体现在:
1.自动的分配内存和硬盘,优先基于内存
2.基于lineage容错机制
3.task会指定次数的重试
4.stage失败会自动重试
5.checkpoint和persist 复用
6.数据调度弹性:DAG,TASK和资源管理无关。
7.数据分片的高度弹性
基于RDD的特性,它的容错机制主要就是两种:一是checkpoint,二是基于lineage(血统)的容错。一般而言,spark选择血统容错,因为对于大规模的数据集,做检查点的成本很高。但是有的情况下,不如说lineage链条过于复杂和冗长,这时候就需要做checkpoint。
考虑到RDD的依赖关系,每个stage内部都是窄依赖,此时一般基于lineage容错,方便高效。在stage之间,是宽依赖,产生了shuffle操作,这种情况下,做检查点则更好。总结来说,stage内部做lineage,stage之间做checkpoint。
备注:
资料来源于:DT_大数据梦工厂(Spark发行版本定制)
更多私密内容,请关注微信公众号:DT_Spark
如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580