利用矩阵求斐波那契数列

利用矩阵求斐波那契数列

flyfish 2015-8-27

矩阵(matrix)定义

一个m*n的矩阵是一个由m行n列元素排成的矩形阵列。矩阵里的元素可以是数字符号或者数学式.

形如

{acbd}

的数表称为二阶矩阵,它由二行二列组成,其中a,b,c,d称为这个矩阵的元素。

形如

{x1x2}

的有序对称为列向量Column vector



A={acbd}

X={x1x2}



Y={ax1+bx2cx1+dx2}

称为二阶矩阵A与平面向量X的乘积,记为AX=Y

斐波那契(Fibonacci)数列

从第三项开始,每一项都是前两项之和。

Fn=Fn ? 1 +Fn ? 2, n?3

把斐波那契数列中 相邻的两项Fn和Fn ? 1写成一个2×1的矩阵。

F0=0

F1=1

{FnFn?1}

={Fn?1+Fn?2Fn?1}

={1×Fn?1+1×Fn?21×Fn?1+0×Fn?2}

={1110}×{Fn?1Fn?2}

={1110}n?1×{F1F0}

={1110}n?1×{10}

求F(n)等于求二阶矩阵的n - 1次方,结果取矩阵第一行第一列的元素。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-05 08:52:57

利用矩阵求斐波那契数列的相关文章

249 递归:概念,利用递归求1~n的阶乘,利用递归求斐波那契数列,利用递归遍历数据

6.1什么是递归 递归:如果一个函数在内部可以调用其本身,那么这个函数就是递归函数. 简单理解: 函数内部自己调用自己, 这个函数就是递归函数 注意:递归函数的作用和循环效果一样,由于递归很容易发生"栈溢出"错误(stack overflow),所以必须要加退出条件return. <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"&g

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有

poj 3070 Fibonacci (矩阵快速幂求斐波那契数列的第n项)

题意就是用矩阵乘法来求斐波那契数列的第n项的后四位数.如果后四位全为0,则输出0,否则 输出后四位去掉前导0,也...就...是...说...输出Fn%10000. 题目说的如此清楚..我居然还在%和/来找后四位还判断是不是全为0还输出时判断是否为0然后 去掉前导0.o(╯□╰)o 还有矩阵快速幂的幂是0时要特判. P.S:今天下午就想好今天学一下矩阵乘法方面的知识,这题是我的第一道正式接触矩阵乘法的题,欧耶! #include<cstdio> #include<iostream>

【poj3070】矩阵乘法求斐波那契数列

[题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [分析] 这是我们熟悉的斐波那契数列,原来呢我们是递推求值的嘛,当然这是最水的想法~~可是!这里的n很大诶,有10^9,for一遍肯定是不可以的咯. 于是,我学会了用矩阵乘法求斐波那契数列(貌似是很经典的). 作为初学者的我觉得十分神奇!! 好,我们来看: 我们每次存两个数f[i-1]和f[i-2],

矩阵乘法&amp;&amp;矩阵快速幂&amp;&amp;最基本的矩阵模型——斐波那契数列

矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一概念由19世纪英国数学家凯利首先提出. 好,很高深对吧.那我们就更加直接地理解一下矩阵的实质:二维数组 好了这个SB都会,就不解释了 同二维数组一样,矩阵是一个'纵横排列的二维数据表格',它一般是一个n*m的二维数组,其中n*m表示它有n行m列 每一位上的数可以用下标i,j来表示,形如这样一个矩阵:

c语言:写一个函数,输入n,求斐波拉契数列的第n项(5种方法,层层优化)

写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列:1,1,2,3,5,8...,当n大于等于3时,后一项为前面两项之和. 解:方法1:从斐波拉契数列的函数定义角度编程 #include<stdio.h> int fibonacci(int n) { int num1=1, num2=1, num3=0,i; if (n <= 2) { printf("斐波拉契数列的第%d项为:%d\n",n,num1); } else { for (i = 2; i <

$O(m^3log(n))$求斐波那契数列

\(O(m^3log(n))\)求斐波那契数列 利用这个递推式:\({F_{n+2}\choose F_{n+1}}={{1 1}\choose{1 0}}{F_{n+1}\choose{F_{n}}}\) 记\({{1 1}\choose{1 0}}\)为\(A\) 得到\({F_{n+1}\choose{F_{n}}}=A^n{F_1\choose F_0}=A^n{1\choose 0}\) // Created by CAD on 2020/2/18. #include <bits/st

求斐波那契数列的第n个数(递归、非递归)

用递归的方式求斐波那契数列的第n个数. 用非递归的方式求斐波那契数列的第n个数. 定义: 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 特别指出:第0项是0,第1项是第一个1. 这个数列从第2项开始,每一项都等于前两项之和. #include<stdio.h> #include<stdlib.

求斐波那契数列的相邻两项的比值,精确到小数后三位。

未完成,只能假设知道是9和10代入. 代码如下: package zuoye; import java.math.BigDecimal; /* * 求斐波那契数列的相邻两项的比值,精确到小数后三位. * p1,p2,p3......pi,pj,...求pi/pj * 1 1 2 3 5 8 13 * 5/8,8/13,...收敛 */ public class Test { static double feibo(int x){ if(x==1||x==2) return 1; return f