洛谷 P1144 最短路计数

题目描述

给出一个N个顶点M条边的无向无权图,顶点编号为1~N。问从顶点1开始,到其他每个点的最短路有几条。

输入输出格式

输入格式:

输入第一行包含2个正整数N,M,为图的顶点数与边数。

接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。

输出格式:

输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可。如果无法到达顶点i则输出0。

输入输出样例

输入样例#1:

5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5

输出样例#1:

1
1
1
2
4

说明

1到5的最短路有4条,分别为2条1-2-4-5和2条1-3-4-5(由于4-5的边有2条)。

对于20%的数据,N ≤ 100;

对于60%的数据,N ≤ 1000;

对于100%的数据,N ≤ 1000000,M ≤ 2000000。

思路:

s[i]记录到i节点的最短路的数量,如果有从x到y节点所需长度比当前的小,则s[y]=s[x];

如果有一种从x点更新比当前到点y所需长度相等的方案那么s[y]+=s[x];

s[]初始值为1。

代码:

#include<cstdio>
#include<queue>
#define maxn 1000001
#define mod 100003
using namespace std;
int n,m,head[maxn],tot,v[maxn],s[maxn];
bool vis[maxn];
queue<int>q;
struct node
{
    int to,next,w;
}a[maxn*2];
void add(int x,int y,int z)
{
    tot++;
    a[tot].to=y;
    a[tot].next=head[x];
    a[tot].w=z;
    head[x]=tot;
}
void spfa()
{
    v[1]=0;
    vis[1]=1;
    s[1]=1;
    q.push(1);
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        vis[x]=0;
        for(int i=head[x];i;i=a[i].next)
        {
            int y=a[i].to;
            if(v[y]==v[x]+a[i].w)
              s[y]=(s[x]+s[y])%mod;
            else
              if(v[y]>v[x]+a[i].w)
              {
                  s[y]=s[x]%mod,v[y]=v[x]+a[i].w;
                if(!vis[y])
                    vis[y]=1,q.push(y);
              }

        }
    }
}
int main()
{
    int i,j,x,y,z;
    scanf("%d%d",&n,&m);
    for(i=1;i<=m;i++)
      scanf("%d%d",&x,&y),add(x,y,1),add(y,x,1);
    for(i=1;i<=n;i++)
      v[i]=123456789;
    spfa();
    for(i=1;i<=n;i++)
      if(v[i]==123456789)
        printf("0\n");
      else
        printf("%d\n",s[i]);
    return 0;
}
时间: 2024-12-22 03:33:49

洛谷 P1144 最短路计数的相关文章

洛谷P1144 最短路计数(SPFA)

To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边. 输出格式: 输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可.如果无法到达顶点i则输

洛谷P1144 最短路计数 及其引申思考

图论题目练得比较少,发一道spfa的板子题目- 题目:P1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边. 输出格式: 输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的

洛谷P1144——最短路计数

题目:https://www.luogu.org/problemnew/show/P1144 spfa跑最短路的同时记录cnt数组表示到达方案数. 代码如下: #include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,m,a,b,head[1000005],ct,dis[1000005],cnt[1000005],hp[10000005],h=1,t=1,p=1000

洛谷——P1144 最短路计数

https://www.luogu.org/problem/show?pid=1144#sub 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边. 输出格式: 输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需

[洛谷P1144]最短路计数

题目大意:求1到其他所有点的最短路径的条数. 解题思路:SPFA(我觉得更像BFS),因为边权为1,所以最先搜到的那次一定是最短路径,在答案中增加父节点的答案数.以后每次搜到最短路径相同时,再在答案中添加当前父节点的答案数.(具体见代码) C++ Code: #include<cstdio> #include<queue> #include<iostream> #include<cstring> using namespace std; int ans[10

洛谷 1144 最短路计数 bfs

洛谷1144 最短路计数 传送门 其实这道题目的正解应该是spfa里面加一些处理,,然而,,然而,,既然它是无权图,,那么就直接bfs了,用一个cnt记录一下每一个点的方案数,分几种情况讨论一下转移,最后输出cnt即为结果.. 题目中所说的重边和自环啥的没看出来有啥影响.. 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 5 const int maxn = 100000 + 500;

洛谷1144 最短路计数

本题地址:http://www.luogu.org/problem/show?pid=1144 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边. 输出格式: 输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需

spfa+dp(洛谷1144 最短路计数)

给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行,每行两个正整数x, y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边. 输出格式: 输出包括N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出mod 100003后的结果即可.如果无法到达顶点i则输出0. 输入样例#1: 5 7 1 2 1 3 2 4 3

洛谷1144最短路计数

一道水题.... 因为是无权图 对于整个图应用一个bfs处理出最短路, 之后在重复更新时应用一个转移方程即可 sum[x]=∑sum[n];,n为能更新x最短路的点. 上代码~ #include<queue> #include<stdio.h> using namespace std; int n;int m; struct data { int v;int next; }edge[4000010]; int cnt;int alist[1000010]; void add(int