100 numpy exercises

100 numpy exercises

A joint effort of the numpy community

The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:

#. Find indices of non-zero elements from [1,2,0,0,4,0]

   .. code:: python

      # Author: Somebody

      print(np.nonzero([1,2,0,0,4,0]))

Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html

Repository is at: https://github.com/rougier/numpy-100

Thanks to Michiaki Ariga, there is now a Julia version.

  1. Import the numpy package under the name np (★☆☆☆☆)

    import numpy as np
  2. Print the numpy version and the configuration (★☆☆☆☆)
    print(np.__version__)
    np.__config__.show()
  3. Create a null vector of size 10 (★☆☆☆☆)
    Z = np.zeros(10)
    print(Z)
  4. How to get the documentation of the numpy add function from the command line ? (★☆☆☆☆)
    python -c "import numpy; numpy.info(numpy.add)"
  5. Create a null vector of size 10 but the fifth value which is 1 (★☆☆☆☆)
    Z = np.zeros(10)
    Z[4] = 1
    print(Z)
  6. Create a vector with values ranging from 10 to 49 (★☆☆☆☆)
    Z = np.arange(10,50)
    print(Z)
  7. Reverse a vector (first element becomes last) (★☆☆☆☆)
    Z = np.arange(50)
    Z = Z[::-1]
  8. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆☆☆)
    Z = np.arange(9).reshape(3,3)
    print(Z)
  9. Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆☆☆)
    nz = np.nonzero([1,2,0,0,4,0])
    print(nz)
  10. Create a 3x3 identity matrix (★☆☆☆☆)
    Z = np.eye(3)
    print(Z)
  11. Create a 3x3x3 array with random values (★☆☆☆☆)
    Z = np.random.random((3,3,3))
    print(Z)
  12. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆☆☆)
    Z = np.random.random((10,10))
    Zmin, Zmax = Z.min(), Z.max()
    print(Zmin, Zmax)
  13. Create a random vector of size 30 and find the mean value (★☆☆☆☆)
    Z = np.random.random(30)
    m = Z.mean()
    print(m)
  14. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★★☆☆☆)
    Z = np.diag(1+np.arange(4),k=-1)
    print(Z)
  15. Create a 8x8 matrix and fill it with a checkerboard pattern (★★☆☆☆)
    Z = np.zeros((8,8),dtype=int)
    Z[1::2,::2] = 1
    Z[::2,1::2] = 1
    print(Z)
  16. Create a checkerboard 8x8 matrix using the tile function (★★☆☆☆)
    Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
    print(Z)
  17. Normalize a 5x5 random matrix (★★☆☆☆)
    Z = np.random.random((5,5))
    Zmax, Zmin = Z.max(), Z.min()
    Z = (Z - Zmin)/(Zmax - Zmin)
    print(Z)
  18. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★★☆☆☆)
    Z = np.dot(np.ones((5,3)), np.ones((3,2)))
    print(Z)
  19. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆☆☆)
    Z = np.zeros((5,5))
    Z += np.arange(5)
    print(Z)
  20. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆☆☆)
    Z = np.linspace(0,1,12,endpoint=True)[1:-1]
    print(Z)
  21. Create a random vector of size 10 and sort it (★★☆☆☆)
    Z = np.random.random(10)
    Z.sort()
    print(Z)
  22. Consider two random array A anb B, check if they are equal (★★☆☆☆)
    A = np.random.randint(0,2,5)
    B = np.random.randint(0,2,5)
    equal = np.allclose(A,B)
    print(equal)
  23. Make an array immutable (read-only) (★★☆☆☆)
    Z = np.zeros(10)
    Z.flags.writeable = False
    Z[0] = 1
  24. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆☆☆)
    Z = np.random.random((10,2))
    X,Y = Z[:,0], Z[:,1]
    R = np.sqrt(X**2+Y**2)
    T = np.arctan2(Y,X)
    print(R)
    print(T)
  25. Create random vector of size 10 and replace the maximum value by 0 (★★☆☆☆)
    Z = np.random.random(10)
    Z[Z.argmax()] = 0
    print(Z)
  26. Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆☆☆)
    Z = np.zeros((10,10), [(‘x‘,float),(‘y‘,float)])
    Z[‘x‘], Z[‘y‘] = np.meshgrid(np.linspace(0,1,10),
                                 np.linspace(0,1,10))
    print(Z)
  27. Print the minimum and maximum representable value for each numpy scalar type (★★☆☆☆)
    for dtype in [np.int8, np.int32, np.int64]:
       print(np.iinfo(dtype).min)
       print(np.iinfo(dtype).max)
    for dtype in [np.float32, np.float64]:
       print(np.finfo(dtype).min)
       print(np.finfo(dtype).max)
       print(np.finfo(dtype).eps)
  28. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆☆☆)
     Z = np.zeros(10, [ (‘position‘, [ (‘x‘, float, 1),
                                       (‘y‘, float, 1)]),
                        (‘color‘,    [ (‘r‘, float, 1),
                                       (‘g‘, float, 1),
                                       (‘b‘, float, 1)])])
    print(Z)
  29. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆☆☆)
    Z = np.random.random((10,2))
    X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
    D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
    print(D)
    
    # Much faster with scipy
    import scipy
    # Thanks Gavin Heverly-Coulson (#issue 1)
    import scipy.spatial
    
    Z = np.random.random((10,2))
    D = scipy.spatial.distance.cdist(Z,Z)
    print(D)
  30. Consider the following file:
    1,2,3,4,5
    6,,,7,8
    ,,9,10,11
    

    How to read it ? (★★☆☆☆)

    Z = np.genfromtxt("missing.dat", delimiter=",")
  31. Generate a generic 2D Gaussian-like array (★★☆☆☆)
    X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
    D = np.sqrt(X*X+Y*Y)
    sigma, mu = 1.0, 0.0
    G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
    print(G)
  32. How to randomly place p elements in a 2D array ? (★★★☆☆)
    # Author: Divakar
    
    n = 10
    p = 3
    Z = np.zeros((n,n))
    np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
  33. Subtract the mean of each row of a matrix (★★★☆☆)
    # Author: Warren Weckesser
    
    X = np.random.rand(5, 10)
    
    # Recent versions of numpy
    Y = X - X.mean(axis=1, keepdims=True)
    
    # Older versions of numpy
    Y = X - X.mean(axis=1).reshape(-1, 1)
  34. How to I sort an array by the nth column ? (★★★☆☆)
    # Author: Steve Tjoa
    
    Z = np.random.randint(0,10,(3,3))
    print(Z)
    print(Z[Z[:,1].argsort()])
  35. How to tell if a given 2D array has null columns ? (★★★☆☆)
    # Author: Warren Weckesser
    
    Z = np.random.randint(0,3,(3,10))
    print((~Z.any(axis=0)).any())
  36. Find the nearest value from a given value in an array (★★★☆☆)
    Z = np.random.uniform(0,1,10)
    z = 0.5
    m = Z.flat[np.abs(Z - z).argmin()]
    print(m)
  37. Consider a generator function that generates 10 integers and use it to build an array (★★★☆☆)
    def generate():
        for x in xrange(10):
            yield x
    Z = np.fromiter(generate(),dtype=float,count=-1)
    print(Z)
  38. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★☆☆)
    # Author: Brett Olsen
    
    Z = np.ones(10)
    I = np.random.randint(0,len(Z),20)
    Z += np.bincount(I, minlength=len(Z))
    print(Z)
  39. How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★☆☆)
    # Author: Alan G Isaac
    
    X = [1,2,3,4,5,6]
    I = [1,3,9,3,4,1]
    F = np.bincount(I,X)
    print(F)
  40. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★☆☆)
    # Author: Nadav Horesh
    
    w,h = 16,16
    I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
    F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
    n = len(np.unique(F))
    print(np.unique(I))
  41. Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★☆☆)
    A = np.random.randint(0,10,(3,4,3,4))
    sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
    print(sum)
  42. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★☆☆)
    # Author: Jaime Fernández del Río
    
    D = np.random.uniform(0,1,100)
    S = np.random.randint(0,10,100)
    D_sums = np.bincount(S, weights=D)
    D_counts = np.bincount(S)
    D_means = D_sums / D_counts
    print(D_means)
  43. How to get the diagonal of a dot product ? (★★★☆☆)
    # Author: Mathieu Blondel
    
    # Slow version
    np.diag(np.dot(A, B))
    
    # Fast version
    np.sum(A * B.T, axis=1)
    
    # Faster version
    np.einsum("ij,ji->i", A, B).
  44. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★☆☆)
    # Author: Warren Weckesser
    
    Z = np.array([1,2,3,4,5])
    nz = 3
    Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
    Z0[::nz+1] = Z
    print(Z0)
  45. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★☆☆)
    A = np.ones((5,5,3))
    B = 2*np.ones((5,5))
    print(A * B[:,:,None])
  46. How to swap two rows of an array ? (★★★☆☆)
    # Author: Eelco Hoogendoorn
    
    A = np.arange(25).reshape(5,5)
    A[[0,1]] = A[[1,0]]
    print(A)
  47. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★☆☆)
    # Author: Nicolas P. Rougier
    
    faces = np.random.randint(0,100,(10,3))
    F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
    F = F.reshape(len(F)*3,2)
    F = np.sort(F,axis=1)
    G = F.view( dtype=[(‘p0‘,F.dtype),(‘p1‘,F.dtype)] )
    G = np.unique(G)
    print(G)
  48. Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★☆☆)
    # Author: Jaime Fernández del Río
    
    C = np.bincount([1,1,2,3,4,4,6])
    A = np.repeat(np.arange(len(C)), C)
    print(A)
  49. How to compute averages using a sliding window over an array ? (★★★☆☆)
    # Author: Jaime Fernández del Río
    
    def moving_average(a, n=3) :
        ret = np.cumsum(a, dtype=float)
        ret[n:] = ret[n:] - ret[:-n]
        return ret[n - 1:] / n
    Z = np.arange(20)
    print(moving_average(Z, n=3))
  50. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★☆☆)
    # Author: Joe Kington / Erik Rigtorp
    from numpy.lib import stride_tricks
    
    def rolling(a, window):
        shape = (a.size - window + 1, window)
        strides = (a.itemsize, a.itemsize)
        return stride_tricks.as_strided(a, shape=shape, strides=strides)
    Z = rolling(np.arange(10), 3)
    print(Z)
  51. How to negate a boolean, or to change the sign of a float inplace ? (★★★☆☆)
    # Author: Nathaniel J. Smith
    
    Z = np.random.randint(0,2,100)
    np.logical_not(arr, out=arr)
    
    Z = np.random.uniform(-1.0,1.0,100)
    np.negative(arr, out=arr)
  52. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★☆☆)
    def distance(P0, P1, p):
        T = P1 - P0
        L = (T**2).sum(axis=1)
        U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
        U = U.reshape(len(U),1)
        D = P0 + U*T - p
        return np.sqrt((D**2).sum(axis=1))
    
    P0 = np.random.uniform(-10,10,(10,2))
    P1 = np.random.uniform(-10,10,(10,2))
    p  = np.random.uniform(-10,10,( 1,2))
    print(distance(P0, P1, p))
  53. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★☆☆)
    # Author: Italmassov Kuanysh
    # based on distance function from previous question
    P0 = np.random.uniform(-10, 10, (10,2))
    P1 = np.random.uniform(-10,10,(10,2))
    p = np.random.uniform(-10, 10, (10,2))
    print np.array([distance(P0,P1,p_i) for p_i in p])
  54. Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★☆☆)
    # Author: Nicolas Rougier
    
    Z = np.random.randint(0,10,(10,10))
    shape = (5,5)
    fill  = 0
    position = (1,1)
    
    R = np.ones(shape, dtype=Z.dtype)*fill
    P  = np.array(list(position)).astype(int)
    Rs = np.array(list(R.shape)).astype(int)
    Zs = np.array(list(Z.shape)).astype(int)
    
    R_start = np.zeros((len(shape),)).astype(int)
    R_stop  = np.array(list(shape)).astype(int)
    Z_start = (P-Rs//2)
    Z_stop  = (P+Rs//2)+Rs%2
    
    R_start = (R_start - np.minimum(Z_start,0)).tolist()
    Z_start = (np.maximum(Z_start,0)).tolist()
    R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
    Z_stop = (np.minimum(Z_stop,Zs)).tolist()
    
    r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
    z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
    R[r] = Z[z]
    print(Z)
    print(R)
  55. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★☆☆)
    # Author: Stefan van der Walt
    
    Z = np.arange(1,15,dtype=uint32)
    R = stride_tricks.as_strided(Z,(11,4),(4,4))
    print(R)
  56. Compute a matrix rank (★★★☆☆)
    # Author: Stefan van der Walt
    
    Z = np.random.uniform(0,1,(10,10))
    U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
    rank = np.sum(S > 1e-10)
  57. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★☆☆)
    # Author: Chris Barker
    
    Z = np.random.randint(0,5,(10,10))
    n = 3
    i = 1 + (Z.shape[0]-3)
    j = 1 + (Z.shape[1]-3)
    C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
    print(C)
  58. Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★☆☆)
    # Author: Eric O. Lebigot
    # Note: only works for 2d array and value setting using indices
    
    class Symetric(np.ndarray):
        def __setitem__(self, (i,j), value):
            super(Symetric, self).__setitem__((i,j), value)
            super(Symetric, self).__setitem__((j,i), value)
    
    def symetric(Z):
        return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
    
    S = symetric(np.random.randint(0,10,(5,5)))
    S[2,3] = 42
    print(S)
  59. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★☆☆)
    # Author: Stefan van der Walt
    
    p, n = 10, 20
    M = np.ones((p,n,n))
    V = np.ones((p,n,1))
    S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
    print(S)
    
    # It works, because:
    # M is (p,n,n)
    # V is (p,n,1)
    # Thus, summing over the paired axes 0 and 0 (of M and V independently),
    # and 2 and 1, to remain with a (n,1) vector.
  60. Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★☆☆)
    # Author: Robert Kern
    
    Z = np.ones(16,16)
    k = 4
    S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
                                           np.arange(0, Z.shape[1], k), axis=1)
  61. How to implement the Game of Life using numpy arrays ? (★★★☆☆)
    # Author: Nicolas Rougier
    
    def iterate(Z):
        # Count neighbours
        N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
             Z[1:-1,0:-2]                + Z[1:-1,2:] +
             Z[2:  ,0:-2] + Z[2:  ,1:-1] + Z[2:  ,2:])
    
        # Apply rules
        birth = (N==3) & (Z[1:-1,1:-1]==0)
        survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
        Z[...] = 0
        Z[1:-1,1:-1][birth | survive] = 1
        return Z
    
    Z = np.random.randint(0,2,(50,50))
    for i in range(100): Z = iterate(Z)
  62. Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★☆☆)
    # Author: Stefan Van der Walt
    
    def cartesian(arrays):
        arrays = [np.asarray(a) for a in arrays]
        shape = (len(x) for x in arrays)
    
        ix = np.indices(shape, dtype=int)
        ix = ix.reshape(len(arrays), -1).T
    
        for n, arr in enumerate(arrays):
            ix[:, n] = arrays[n][ix[:, n]]
    
        return ix
    
    print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
  63. How to create a record array from a regular array ? (★★★☆☆)
    Z = np.array([("Hello", 2.5, 3),
                  ("World", 3.6, 2)])
    R = np.core.records.fromarrays(Z.T,
                                   names=‘col1, col2, col3‘,
                                   formats = ‘S8, f8, i8‘)
  64. Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★☆☆)
    Author: Ryan G.
    
    x = np.random.rand(5e7)
    
    %timeit np.power(x,3)
    1 loops, best of 3: 574 ms per loop
    
    %timeit x*x*x
    1 loops, best of 3: 429 ms per loop
    
    %timeit np.einsum(‘i,i,i->i‘,x,x,x)
    1 loops, best of 3: 244 ms per loop
  65. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★★☆)
    # Author: Gabe Schwartz
    
    A = np.random.randint(0,5,(8,3))
    B = np.random.randint(0,5,(2,2))
    
    C = (A[..., np.newaxis, np.newaxis] == B)
    rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
    print(rows)
  66. Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★★☆)
    # Author: Robert Kern
    
    Z = np.random.randint(0,5,(10,3))
    E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
    U = Z[~E]
    print(Z)
    print(U)
  67. Convert a vector of ints into a matrix binary representation (★★★★☆)
    # Author: Warren Weckesser
    
    I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
    B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
    print(B[:,::-1])
    
    # Author: Daniel T. McDonald
    
    I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
    print(np.unpackbits(I[:, np.newaxis], axis=1))
  68. Given a two dimensional array, how to extract unique rows ? (★★★★☆)

    Note

    See stackoverflow for explanations.

    # Author: Jaime Fernández del Río
    
    Z = np.random.randint(0,2,(6,3))
    T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
    _, idx = np.unique(T, return_index=True)
    uZ = Z[idx]
    print(uZ)
  69. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★★☆)
    # Author: Alex Riley
    # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
    
    np.einsum(‘i->‘, A)       # np.sum(A)
    np.einsum(‘i,i->i‘, A, B) # A * B
    np.einsum(‘i,i‘, A, B)    # np.inner(A, B)
    np.einsum(‘i,j‘, A, B)    # np.outer(A, B)
  70. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★★★) ?
    # Author: Bas Swinckels
    
    phi = np.arange(0, 10*np.pi, 0.1)
    a = 1
    x = a*phi*np.cos(phi)
    y = a*phi*np.sin(phi)
    
    dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
    r = np.zeros_like(x)
    r[1:] = np.cumsum(dr)                # integrate path
    r_int = np.linspace(0, r.max(), 200) # regular spaced path
    x_int = np.interp(r_int, r, x)       # integrate path
    y_int = np.interp(r_int, r, y)
时间: 2024-10-11 10:03:03

100 numpy exercises的相关文章

Python之Numpy详细教程

NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用NumPy,开

凸包算法-GrahamScan+暴力+分治

RT.求平面上点集的凸包. 1. GrahamScan算法,<算法导论>上的例子,先找到y最小的点O,以O建立极坐标,其它点按极角排序后再从头开始扫描(配合stack实现). 2.BruteForce算法,依赖定理:如果一个点在平面上某三个点组成的三角形内,那么这个点不可能是凸包上的点. 所以暴力的思路是平面上的点每4个进行枚举,并判断是否满足定理,若满足,则删除这个点继续找:一直找到没有满足定理的点为止.. 3.DivideAndConquer思路:有很多种,这里我实现的只是严格意义上最后一

凸包-Graham扫描法

RT,Graham扫描法求凸包分为3步: 1.找到y最小的点 2.以y最小的点O为原点,求其余所有点相对O的极角并按极角从小到大排序 3.对于排序后的点集,配合栈,完成Graham扫描. ConvexHull.py #coding=utf-8 import math import numpy import pylab as pl #画原始图 def drawGraph(x,y): pl.title("The Convex Hull") pl.xlabel("x axis&qu

1000个经常使用的Python库和演示样例代码

以下是programcreek.com通过分析大量开源码,提取出的最经常使用的python库. 1. sys    (4627) 2. os    (4088) 3. re    (3563) 4. time    (3195) 5. datetime    (2214) 6. random    (2135) 7. unittest    (1928) 8. logging    (1909) 9. urllib    (1884) 10. subprocess    (1756) 11. s

Python矩阵作图库matplotlib的初级使用

matplotlib背景介绍:第三方库matplotlib(没有的话,可在终端输入"pip install matplotlib"进行安装)是一款高质量的2D作图库,可被广泛地应用于支持Python的环境中.并且,如果在某些情境下需要绘制一些基础的3D图,这个时候可以结合标准库mpl_toolkits.mplot3d来使用.出于Python语言的便携性,从而为我们提供了一套轻量级的作图方案.由于网络上的资料大多不太符合官方推荐的作图方式,且很多内容并没有一个清晰的逻辑.笔者此处重新整理

远程配置 tensorflow 环境

1.为了对比别人的方法,需要配置的环境为:Python 3.6.4,Keras 2.1.6,Tensorflow 1.7.0 在自己电脑上,anaconda3, 直接用原环境下的 tensorflow-gpu1.13.1  发现最开始的部分代码段可以运行,但无法保存model 的代码段不起作用,造成错误. callbacks=[ModelCheckpoint(filepath=filepath_INCV, monitor='val_acc', verbose=1, save_best_only=

100道关于numpy的练习

声明:并非原创,转自https://github.com/rougier/numpy-100 This is a collection of exercises that have been collected in the numpy mailing list, on stack overflow and in the numpy documentation. The goal of this collection is to offer a quick reference for both

100道numpy练习

100道numpy练习 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/42784403 今天在deeplearning.net上看theano tutorial,发现一个numpy-100-exercise,介绍numpy一些基本用法的,不过不是很具体,我利用闲暇时间照着敲了一些,权且当作翻译吧,增加函数的原型和详细介绍.持续更新. 一.初学者10道 1.在python环境中导入numpy包,并命名为np

【NumPy基础】100道numpy练习——Apprentice篇

[NumPy基础]100道numpy练习--Apprentice篇 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/42811297 今天又用半小时扫了一下Apprentice篇里的10道exercise,不知道怎么翻译Apprentice(学徒--)这个词,就直接以Apprentice篇作为题目了.numpy语法直白如水啊,花这些时间exercise有点浪费了.......Anyway,为了后面更熟练地用一