一、引子
在Worker Actor中,每次LaunchExecutor会创建一个CoarseGrainedExecutorBackend进程,Executor和CoarseGrainedExecutorBackend是1对1的关系。也就是说集群里启动多少Executor实例就有多少CoarseGrainedExecutorBackend进程。
那么到底是如何分配Executor的呢?怎么控制调节Executor的个数呢?
二、Driver和Executor资源调度
下面主要介绍一下Spark Executor分配策略:
我们仅看,当Application提交注册到Master后,Master会返回RegisteredApplication,之后便会调用schedule()这个方法,来分配Driver的资源,和启动Executor的资源。
schedule()方法是来调度当前可用资源的调度方法,它管理还在排队等待的Apps资源的分配,这个方法是每次在集群资源发生变动的时候都会调用,根据当前集群最新的资源来进行Apps的资源分配。
Driver资源调度:
随机的将Driver分配到空闲的Worker上去,详细流程请看我写的注释 :)
// First schedule drivers, they take strict precedence over applications val shuffledWorkers = Random.shuffle(workers) // 把当前workers这个HashSet的顺序随机打乱 for (worker <- shuffledWorkers if worker.state == WorkerState.ALIVE) { //遍历活着的workers for (driver <- waitingDrivers) { //在等待队列中的Driver们会进行资源分配 if (worker.memoryFree >= driver.desc.mem && worker.coresFree >= driver.desc.cores) { //当前的worker内存和cpu均大于当前driver请求的mem和cpu,则启动 launchDriver(worker, driver) //启动Driver 内部实现是发送启动Driver命令给指定Worker,Worker来启动Driver。 waitingDrivers -= driver //把启动过的Driver从队列移除 } } }
Executor资源调度:
Spark默认提供了一种在各个节点进行round-robin的调度,用户可以自己设置这个flag
val spreadOutApps = conf.getBoolean("spark.deploy.spreadOut", true)
在介绍之前我们先介绍一个概念,
可用的Worker:什么是可用,可用就是资源空闲足够且满足一定的规则来启动当前App的Executor。
Spark定义了一个canUse方法:这个方法接受一个ApplicationInfo的描述信息和当前Worker的描述信息。
1、当前worker的空闲内存 比
该app在每个slave要占用的内存 (executor.memory默认512M)大
2、当前app从未在此worker启动过App
总结: 从这点看出,要满足:该Worker的当前可用最小内存要比配置的executor内存大,并且对于同一个App只能在一个Worker里启动一个Exeutor,如果要启动第二个Executor,那么请到其它Worker里。这样的才算是对App可用的Worker。
/** * Can an app use the given worker? True if the worker has enough memory and we haven't already * launched an executor for the app on it (right now the standalone backend doesn't like having * two executors on the same worker). */ def canUse(app: ApplicationInfo, worker: WorkerInfo): Boolean = { worker.memoryFree >= app.desc.memoryPerSlave && !worker.hasExecutor(app) }
SpreadOut分配策略:
SpreadOut分配策略是一种轮询集群各个Worker,为Executor比较平均的分配Worker资源,来启动创建Executor的策略,好处是负载均衡,坏处是会造成启动等待。
下面看看,默认的spreadOutApps模式启动App的过程:
1、等待分配资源的apps队列默认是FIFO的。
2、app.coresLeft表示的是该app还有cpu资源没申请到: app.coresLeft = 当前app申请的maxcpus - granted的cpus
3、遍历未分配完全的apps,继续给它们分配资源,
4、usableWorkers = 从当前ALIVE的Workers中过滤找出上文描述的可用Worker,然后根据cpus的资源空闲,从大到小给Workers排序。
5、当toAssign(即将要分配的的core数>0,就找到可以的Worker持续分配)
6、当可用Worker的free cores 大于 目前该Worker已经分配的core时,再给它分配1个core,这样分配是很平均的方法。
7、round-robin轮询可用的Worker循环
8、toAssign=0时结束循环,开始根据分配策略去真正的启动Executor。
举例: 1个APP申请了6个core, 现在有2个Worker可用。
那么: toAssign = 6,assigned = 2
那么就会在assigned(1)和assigned(0)中轮询平均分配cores,以+1 core的方式,最终每个Worker分到3个core,即每个Worker的启动一个Executor,每个Executor获得3个cores。
// Right now this is a very simple FIFO scheduler. We keep trying to fit in the first app // in the queue, then the second app, etc. if (spreadOutApps) { // Try to spread out each app among all the nodes, until it has all its cores for (app <- waitingApps if app.coresLeft > 0) { //对还未被完全分配资源的apps处理 val usableWorkers = workers.toArray.filter(_.state == WorkerState.ALIVE) .filter(canUse(app, _)).sortBy(_.coresFree).reverse //根据core Free对可用Worker进行降序排序。 val numUsable = usableWorkers.length //可用worker的个数 eg:可用5个worker val assigned = new Array[Int](numUsable) //候选Worker,每个Worker一个下标,是一个数组,初始化默认都是0 var toAssign = math.min(app.coresLeft, usableWorkers.map(_.coresFree).sum)//还要分配的cores = 集群中可用Worker的可用cores总和(10), 当前未分配core(5)中找最小的 var pos = 0 while (toAssign > 0) { if (usableWorkers(pos).coresFree - assigned(pos) > 0) { //以round robin方式在所有可用Worker里判断当前worker空闲cpu是否大于当前数组已经分配core值 toAssign -= 1 assigned(pos) += 1 //当前下标pos的Worker分配1个core +1 } pos = (pos + 1) % numUsable //round-robin轮询寻找有资源的Worker } // Now that we've decided how many cores to give on each node, let's actually give them for (pos <- 0 until numUsable) { if (assigned(pos) > 0) { //如果assigned数组中的值>0,将启动一个executor在,指定下标的机器上。 val exec = app.addExecutor(usableWorkers(pos), assigned(pos)) //更新app里的Executor信息 launchExecutor(usableWorkers(pos), exec) //通知可用Worker去启动Executor app.state = ApplicationState.RUNNING } } } } else {
非SpreadOut分配策略:
非SpreadOut策略,该策略:会尽可能的根据每个Worker的剩余资源来启动Executor,这样启动的Executor的core是不均匀的。好处是加快了App的Executor启动,坏处,每个Executor的并行度和负载均衡就不能够保证了。
当用户设定了参数spark.deploy.spreadOut 为false时,触发此游戏分支,跑个题,有些困了。。
1、遍历可用Workers
2、且遍历Apps
3、比较当前Worker的可用core和app还需要分配的core,取最小值当做还需要分配的core
4、如果coreToUse大于0,则直接拿可用的core来启动Executor。。奉献当前Worker全部资源。(Ps:挨个榨干每个Worker的剩余资源。。。。)
举例: App申请12个core,3个Worker,Worker1剩余1个core, Worke2r剩7个core, Worker3剩余4个core.
这样会启动3个Executor,Executor1 占用1个core, Executor2占用7个core, Executor3占用4个core.
总结:这样是尽可能的满足App,让其尽快执行,而忽略了其并行效率和负载均衡。
} else { // Pack each app into as few nodes as possible until we've assigned all its cores for (worker <- workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) { for (app <- waitingApps if app.coresLeft > 0) { if (canUse(app, worker)) { //直接问当前worker是有空闲的core val coresToUse = math.min(worker.coresFree, app.coresLeft) //有则取,不管多少 if (coresToUse > 0) { //有 val exec = app.addExecutor(worker, coresToUse) //直接启动 launchExecutor(worker, exec) app.state = ApplicationState.RUNNING } } } } } }
三、总结:
1、 在Worker Actor中,每次LaunchExecutor会创建一个CoarseGrainedExecutorBackend进程,一个Executor对应一个CoarseGrainedExecutorBackend
2、针对同一个App,每个Worker里只能有一个针对该App的Executor存在,切记。如果想让整个App的Executor变多,设置SPARK_WORKER_INSTANCES,让Worker变多。
3、Executor的资源分配有2种策略:
3.1、SpreadOut :一种轮询集群各个Worker,为Executor比较平均的分配Worker资源,来启动创建Executor的策略,好处是负载均衡,坏处是会造成启动等待。
3.2、非SpreadOut:会尽可能的根据每个Worker的剩余资源来启动Executor,这样启动的Executor的core是不均匀的。好处是加快了App的Executor启动,坏处,每个Executor的并行度和负载均衡就不能够保证了。
行文仓促,如有不正之处,请指出,欢迎讨论 :)
——EOF——
原创文章,转载请注明出自:http://blog.csdn.net/oopsoom/article/details/38763985