目标函数、损失函数、代价函数

http://www.cnblogs.com/Belter/p/6653773.html

注:代价函数(有的地方也叫损失函数,Loss Function)在机器学习中的每一种算法中都很重要,因为训练模型的过程就是优化代价函数的过程,代价函数对每个参数的偏导数就是梯度下降中提到的梯度,防止过拟合时添加的正则化项也是加在代价函数后面的。在学习相关算法的过程中,对代价函数的理解也在不断的加深,在此做一个小结。

1. 什么是代价函数?



假设有训练样本(x, y),模型为h,参数为θ。h(θ) = θTx(θT表示θ的转置)。

(1)概况来讲,任何能够衡量模型预测出来的值h(θ)与真实值y之间的差异的函数都可以叫做代价函数C(θ),如果有多个样本,则可以将所有代价函数的取值求均值,记做J(θ)。因此很容易就可以得出以下关于代价函数的性质:

  • 对于每种算法来说,代价函数不是唯一的;
  • 代价函数是参数θ的函数;
  • 总的代价函数J(θ)可以用来评价模型的好坏,代价函数越小说明模型和参数越符合训练样本(x, y);
  • J(θ)是一个标量;

(2)当我们确定了模型h,后面做的所有事情就是训练模型的参数θ。那么什么时候模型的训练才能结束呢?这时候也涉及到代价函数,由于代价函数是用来衡量模型好坏的,我们的目标当然是得到最好的模型(也就是最符合训练样本(x, y)的模型)。因此训练参数的过程就是不断改变θ,从而得到更小的J(θ)的过程。理想情况下,当我们取到代价函数J的最小值时,就得到了最优的参数θ,记为:

minθJ(θ)

例如,J(θ) = 0,表示我们的模型完美的拟合了观察的数据,没有任何误差。

(3)在优化参数θ的过程中,最常用的方法是梯度下降,这里的梯度就是代价函数J(θ)对θ1, θ2, ..., θn的偏导数。由于需要求偏导,我们可以得到另一个关于代价函数的性质:

  • 选择代价函数时,最好挑选对参数θ可微的函数(全微分存在,偏导数一定存在)

2. 代价函数的常见形式



经过上面的描述,一个好的代价函数需要满足两个最基本的要求:能够评价模型的准确性,对参数θ可微。

2.1 均方误差

在线性回归中,最常用的是均方误差(Mean squared error),具体形式为:

J(θ0,θ1)=12m∑i=1m(y^(i)?y(i))2=12m∑i=1m(hθ(x(i))?y(i))2

m:训练样本的个数;

hθ(x):用参数θ和x预测出来的y值;

y:原训练样本中的y值,也就是标准答案

上角标(i):第i个样本

2.2 交叉熵

在逻辑回归中,最常用的是代价函数是交叉熵(Cross Entropy),交叉熵是一个常见的代价函数,在神经网络中也会用到。下面是《神经网络与深度学习》一书对交叉熵的解释:

交叉熵是对「出乎意料」(译者注:原文使用suprise)的度量。神经元的目标是去计算函数y, 且y=y(x)。但是我们让它取而代之计算函数a, 且a=a(x)。假设我们把a当作y等于1的概率,1?a是y等于0的概率。那么,交叉熵衡量的是我们在知道y的真实值时的平均「出乎意料」程度。当输出是我们期望的值,我们的「出乎意料」程度比较低;当输出不是我们期望的,我们的「出乎意料」程度就比较高。

在1948年,克劳德·艾尔伍德·香农将热力学的熵,引入到信息论,因此它又被称为香农熵(Shannon Entropy),它是香农信息量(Shannon Information Content, SIC)的期望。香农信息量用来度量不确定性的大小:一个事件的香农信息量等于0,表示该事件的发生不会给我们提供任何新的信息,例如确定性的事件,发生的概率是1,发生了也不会引起任何惊讶;当不可能事件发生时,香农信息量为无穷大,这表示给我们提供了无穷多的新信息,并且使我们无限的惊讶。更多解释可以看这里

J(θ)=?1m[∑i=1m(y(i)log?hθ(x(i))+(1?y(i))log?(1?hθ(x(i)))]

符号说明同上

2.3 神经网络中的代价函数

学习过神经网络后,发现逻辑回归其实是神经网络的一种特例(没有隐藏层的神经网络)。因此神经网络中的代价函数与逻辑回归中的代价函数非常相似:

J(θ)=?1m[∑i=1m∑k=1K(yk(i)log?hθ(x(i))+(1?yk(i))log?(1?(hθ(x(i)))k)]

这里之所以多了一层求和项,是因为神经网络的输出一般都不是单一的值,K表示在多分类中的类型数。

例如在数字识别中,K=10,表示分了10类。此时对于某一个样本来说,输出的结果如下:

  1.1266e-004
  1.7413e-003
  2.5270e-003
  1.8403e-005
  9.3626e-003
  3.9927e-003
  5.5152e-003
  4.0147e-004
  6.4807e-003
  9.9573e-001

一个10维的列向量,预测的结果表示输入的数字是0~9中的某一个的概率,概率最大的就被当做是预测结果。例如上面的预测结果是9。理想情况下的预测结果应该如下(9的概率是1,其他都是0):

   0
   0
   0
   0
   0
   0
   0
   0
   0
   1

比较预测结果和理想情况下的结果,可以看到这两个向量的对应元素之间都存在差异,共有10组,这里的10就表示代价函数里的K,相当于把每一种类型的差异都累加起来了。

3. 代价函数与参数



代价函数衡量的是模型预测值h(θ) 与标准答案y之间的差异,所以总的代价函数J是h(θ)和y的函数,即J=f(h(θ), y)。又因为y都是训练样本中给定的,h(θ)由θ决定,所以,最终还是模型参数θ的改变导致了J的改变。对于不同的θ,对应不同的预测值h(θ),也就对应着不同的代价函数J的取值。变化过程为:

θ??>h(θ)??>J(θ)

θ引起了h(θ)的改变,进而改变了J(θ)的取值。为了更直观的看到参数对代价函数的影响,举个简单的例子:

有训练样本{(0, 0), (1, 1), (2, 2), (4, 4)},即4对训练样本,每个样本对中第1个数表示x的值,第2个数表示y的值。这几个点很明显都是y=x这条直线上的点。如下图:

图1:不同参数可以拟合出不同的直线

 

常数项为0,所以可以取θ0=0,然后取不同的θ1,可以得到不同的拟合直线。当θ1=0时,拟合的直线是y=0,即蓝色线段,此时距离样本点最远,代价函数的值(误差)也最大;当θ1=1时,拟合的直线是y=x,即绿色线段,此时拟合的直线经过每一个样本点,代价函数的值为0。

通过下图可以查看随着θ1的变化,J(θ)的变化情况:

图2:代价函数J(θ)随参数的变化而变化

 

从图中可以很直观的看到θ对代价函数的影响,当θ1=1时,代价函数J(θ)取到最小值。因为线性回归模型的代价函数(均方误差)的性质非常好,因此也可以直接使用代数的方法,求J(θ)的一阶导数为0的点,就可以直接求出最优的θ值(正规方程法)。

4. 代价函数与梯度



梯度下降中的梯度指的是代价函数对各个参数的偏导数,偏导数的方向决定了在学习过程中参数下降的方向,学习率(通常用α表示)决定了每步变化的步长,有了导数和学习率就可以使用梯度下降算法(Gradient Descent Algorithm)更新参数了。下图中展示了只有两个参数的模型运用梯度下降算法的过程。

下图可以看做是代价函数J(θ)与参数θ做出的图,曲面上的一个点(θ0, θ1, J(θ)),有无数条切线,在这些切线中与x-y平面(底面,相当于θ0, θ1)夹角最大的那条切线就是该点梯度的方向,沿该方向移动,会产生最大的高度变化(相对于z轴,这里的z轴相当于代价函数J(θ))。

4.1 线性回归模型的代价函数对参数的偏导数

还是以两个参数为例,每个参数都有一个偏导数,且综合了所有样本的信息。

4.2 逻辑回归模型的代价函数对参数的偏导数

根据逻辑回归模型的代价函数以及sigmoid函数

hθ(x)=g(θTx)

g(z)=11+e?z

得到对每个参数的偏导数为

??θjJ(θ)=∑i=1m(hθ(xi)?yi)xji

详细推导过程可以看这里-逻辑回归代价函数的导数

作者:zzanswer
链接:https://www.zhihu.com/question/52398145/answer/209358209
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

首先给出结论:损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,对于目标函数来说在有约束条件下的最小化就是损失函数(loss function)。

举个例子解释一下:(图片来自Andrew Ng Machine Learning公开课视频)

上面三个图的函数依次为 , , 。我们是想用这三个函数分别来拟合Price,Price的真实值记为

我们给定 ,这三个函数都会输出一个 ,这个输出的 与真实值 可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度,比如:

,这个函数就称为损失函数(loss function),或者叫代价函数(cost function)。损失函数越小,就代表模型拟合的越好

那是不是我们的目标就只是让loss function越小越好呢?还不是。

这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的 遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集, 关于训练集的平均损失称作经验风险(empirical risk),即 ,所以我们的目标就是最小化 ,称为经验风险最小化

到这里完了吗?还没有。

如果到这一步就完了的话,那我们看上面的图,那肯定是最右面的 的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看 肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合(over-fitting)。

为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险最小化,还要让结构风险最小化。这个时候就定义了一个函数 ,这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有 , 范数。

到这一步我们就可以说我们最终的优化函数是: ,即最优化经验风险和结构风险,而这个函数就被称为目标函数

结合上面的例子来分析:最左面的 结构风险最小(模型结构最简单),但是经验风险最大(对历史数据拟合的最差);最右面的 经验风险最小(对历史数据拟合的最好),但是结构风险最大(模型结构最复杂);而 达到了二者的良好平衡,最适合用来预测未知数据集。

时间: 2024-10-14 09:00:49

目标函数、损失函数、代价函数的相关文章

『cs231n』限制性分类器损失函数和最优化

代码部分 SVM损失函数 & SoftMax损失函数: 注意一下softmax损失的用法: SVM损失函数: import numpy as np def L_i(x, y, W): ''' 非向量化SVM损失计算 :param x: 输入矢量 :param y: 标准分类 :param W: 参数矩阵 :return: ''' delta = 1.0 scores = W.dot(x) correct_score = scores[y] D = W.shap[0] loss_i = 0.0 f

损失函数 hinge loss vs softmax loss

1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x) 与真实值 Y 的不一致程度,它是一个非负实值函数,通常用 L(Y,f(x)) 来表示. 损失函数越小,模型的鲁棒性就越好. 损失函数是经验风险函数的核心部分,也是结构风险函数的重要组成部分.模型的风险结构包括了风险项和正则项,通常如下所示: 其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的 Φ 是正则化项(regularizer)或者叫惩罚项(penalty term), 它可以是L1,

机器学习:过拟合与正则化

过拟合的定义:过拟合是指模型过度拟合训练集, 学到训练集中过多的噪音或随机波动,导致模型泛化能力差的情况.它表现为在训练集上表现良好,在测试集上表现差. 解决方法:1.重新清洗数据,导致过拟合的一个原因也有可能是数据不纯导致的,如果出现了过拟合就需要我们重新清洗数据. 2.数据集扩增(data augmentation)  2.1从数据源头采集更多数据  2.2复制原有数据并加上随机噪声  2.3重采样 3.采用dropout方法.dropout方法在训练时删除一定比例的神经元, 让这些神经元不

GBrank_问题列表

1 样本的采样有哪些方式? - 按query进行采样? - 随机选择query, 一旦选择了某个query, 则该query的所有url都被选择了. 需要注意的时, 对于不同的query, 它的url个数是不一样的(尽管对于query而言, 采样是等概率的, 而对于url而言不是等概率的). - 按url进行采样 - 是事先对每个query的url组成url对, 然后随机采样url对? - 还是对url进行采样, 然后对采用到的url进行pairing(要注意只有在同一个query下的url才可

第二节,TensorFlow 使用前馈神经网络实现手写数字识别

一 感知器      感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695      感知器(Perceptron)是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1.这种算法的局限性很大: 只能将数据分为 2 类 数据必须是线性可分的 虽然有这些局限,但是感知器是 ANN 和 SVM 的基础,理解了感知器的原理,对学习ANN 和 SVM 会有帮助,所以还是值得花些时间的. 感知器可以表示为

批量梯度下降(BGD)、随机梯度下降(SGD)以及小批量梯度下降(MBGD)的理解

https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent).随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent).其中小批量梯度下降法也常用在深度学习中进行模型的训练.接下来,我们将对这三种不同的梯度下降法进行理解.  为了便于理解,这里我们将使

Tensorflow细节-P84-梯度下降与批量梯度下降

1.批量梯度下降 批量梯度下降法是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新.从数学上理解如下: 对应的目标函数(代价函数)即为: (1)对目标函数求偏导: (2)每次迭代对参数进行更新: 优点: ??(1)一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行. ??(2)由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向.当目标函数为凸函数时,BGD一定能够得到全局最优. 缺点: ??(1)当样本数目 m 很大时,每迭代一步都需要对所有样本

08-01 通过线性回归了解算法流程

目录 通过线性回归带你了解算法流程 一.1. 1 线性回归引入 二.1. 2 决策函数 三.1. 3 损失函数 四.1. 4 目标函数 五.1. 5 目标函数最小化 六.1. 6 过拟合 七.1. 7 正则化 7.1 1. 7.1 L1正则化 7.2 1. 7.2 L2正则化 八.1. 8 训练集.验证集.测试集 8.1 1. 8.1 训练集 8.2 1. 8.2 验证集 8.3 1. 8.3 测试集 九.1. 9 本章小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构

[白话解析] 带你一起梳理Word2vec相关概念

[白话解析] 带你一起梳理Word2vec相关概念 0x00 摘要 本文将尽量使用易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来说,运用感性直觉的思考来帮大家梳理Word2vec相关概念. 0x01 导读 1. 原委 本来只是想写Word2vec,没想到一个个知识点梳理下来,反而Word2vec本身只占据了一小部分.所以干脆就把文章的重点放在梳理相关概念上,这样大家可以更好的理解Word2vec. 为了讨论Word2vec,我们需要掌握(或者暂且当做已知)的先决知识点有: 独热编码 /

机器学习的防止过拟合方法

过拟合 ??我们都知道,在进行数据挖掘或者机器学习模型建立的时候,因为在统计学习中,假设数据满足独立同分布(i.i.d,independently and identically distributed),即当前已产生的数据可以对未来的数据进行推测与模拟,因此都是使用历史数据建立模型,即使用已经产生的数据去训练,然后使用该模型去拟合未来的数据.但是一般独立同分布的假设往往不成立,即数据的分布可能会发生变化(distribution drift),并且可能当前的数据量过少,不足以对整个数据集进行分