R简单数据分析

眼下大数据口号满天飞,今天拿我微信圈朋友一段时间内分享内容作为数据,用R包的算法实现简单分析。

由于微信没有接口获取数据,暂时只能手动记录数据,主要是做个小尝试,数据获取方式是其次。

1)我们看看微信圈活跃的朋友。

PS:知道为何我们的流量烧的这么快了吧?这些小伙伴八成是运营商潜伏过来的余则成,在背后分成还要我们帮忙数钱,后续我会揪出那个人,敬请期待。

2)我们看看微信圈朋友的喜好。

PS:喜欢分享链接的小伙伴一般喜欢晒图片,有木有?亲。

3)用图表讲述故事,有图有真相。

  • 微信圈内容占比

PS:明白流量去哪了吧。

  • 个人分享内容

PS:找到真凶了吗?亲,为保护微信圈朋友的隐私,名字一律作了处理,勿对号入座。

4)感谢老师和小伙伴们,惭愧我只学到皮毛,未触及精髓,未来数据的路还很长,且学且挖掘,tks!

R简单数据分析,码迷,mamicode.com

时间: 2024-11-03 21:25:53

R简单数据分析的相关文章

R语言数据分析系列之八

R语言数据分析系列之八 -- by comaple.zhang 再谈多项式回归,本节再次提及多项式回归分析,理解过拟合现象,并深入cross-validation(交叉验证),regularization(正则化)框架,来避免产生过拟合现象,从更加深入的角度探讨理论基础以及基于R如何将理想照进现实. 本节知识点,以及数据集生成 1,        ggplot2进行绘图; 2,        为了拟合更复杂的数据数据集采用sin函数加上服从正太分布的随机白噪声数据; 3,        poly

R语言数据分析系列之七

R语言数据分析系列之七 -- by comaple.zhang 回归分析建模是数据分析里面很重要的一个应用之一,即通过使用已有的自变量的值建立某种关系,来预测未知变量(因变量)的值.如果因变量是连续的那就是回归分析,如果因变量为离散的,可以理解为是分类.在机器学习算法中,不管是连续变量预测还是离散的变量预测,我们都称之为有监督学习. 回归分析可以用来做广告点击率预测也可以用来做销量预测,app各种指标预测,或者库存量,分仓铺货预测等.既然如此神奇,那么我们就来看一下回归是如何做到的. 数据集 我

基于ELK的简单数据分析

原文链接: http://www.open-open.com/lib/view/open1455673846058.html 环境 CentOS 6.5 64位 JDK 1.8.0_20 Elasticsearch 1.7.3 LogStash 1.5.6 Kibana 4.1.4 介绍 ElasticSearch是有名的开源搜索引擎,现在很多公司使用ELK技术栈做日志分析,比如新浪使用ELK处理每天32亿条记录,详细的介绍可以查看这里 我们的数据量没有新浪那么大,一天正常水平在6千万条左右,多

用python调用R做数据分析-准备工作

0.R的介绍 R是自由软件,不带任何担保,在某些条件下你可以将其自由散布,用'license()'或'licence()'来看散布的详细条件. R是个合作计划,有许多人为之做出了贡献,用'contributors()'来看合作者的详细情况,用'citation()'会告诉你如何在出版物中正确地引用R或R程序包,用'demo()'来看一些示范程序,用'help()'来阅读在线帮助文件,或用'help.start()'通过HTML浏览器来看帮助文件. 用'q()'退出R. demo(graphics

R语言数据分析系列之九 - 逻辑回归

R语言数据分析系列之九 -- by comaple.zhang 本节将一下逻辑回归和R语言实现,逻辑回归(LR,LogisticRegression)其实属于广义回归模型,根据因变量的类型和服从的分布可以分为,普通多元线性回归模型,和逻辑回归,逻辑回归是指因变量是离散并且取值范围为{0,1}两类,如果离散变量取值是多项即变为 multi-class classification,所以LR模型是一个二分类模型,可以用来做CTR预测等.那么我们现在来引出逻辑回归如何做二分类问题. 问题引入 在多元线

R语言数据分析系列六

R语言数据分析系列六 -- by comaple.zhang 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候怎样下手分析,数据分析的第一步.探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标.经常使用的例如以下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差.极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每一个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根.用来衡量一个数据集的

R语言数据分析系列之五

R语言数据分析系列之五 -- by comaple.zhang 本节来讨论一下R语言的基本图形展示,先来看一张效果图吧. 这是一张用R语言生成的,虚拟的wordcloud云图,详细实现细节请參见我的github项目:https://github.com/comaple/R-wordcloud.git 好了我们開始今天的旅程吧: 本节用到的包有:RColorBrewer用来生成序列颜色值, plotrix三维图形 本节用到的数据集:vcd包中的Arthritis数据集 数据集 install.pa

R语言数据分析系列之六

R语言数据分析系列之六 -- by comaple.zhang 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性

R语言数据分析系列之三

R语言数据分析系列之三 -- by comaple.zhang 上次讲了vector这次讲matrix,array,dataframe,ts 数据结构 matrix 矩阵 R语言中矩阵可以理解为是由两个及两个以上的向量组成. 矩阵创建 从向量创建 > x <- sample(1:100,16) > x [1] 14 43 89  3 96 58 61 75 33 66 24 54 45 15  6 44   > m <- matrix(x)   > m