HDU 4982 Goffi and Squary Partition(推理)

HDU 4982 Goffi and Squary Partition

思路:直接从完全平方数往下找,然后判断能否构造出该完全平方数,如果可以就是yes,如果都不行就是no,注意构造时候的判断,由于枚举一个完全平方数,剩下数字为kk,构造的时候要保证数字不重复

代码:

#include <cstdio>
#include <cstring>
#include <cmath>

int n, k;

bool judge(int num) {
    int yu = num * num;
    int kk = n - yu;
    if (kk == 0) return false;
    int sum = 0;
    int cnt = 0;
    for (int i = 0; i < k - 2; i++) {
	cnt++;
	if (cnt == kk) cnt++;
	sum += cnt;
    }
    if (sum + kk >= n) return false;
    int need = n - sum - kk;
    if (need <= cnt) return false;
    cnt++;
    if (kk == cnt || kk == cnt + 1) {
	if (need == kk) return false;
    }
    return true;
}

bool solve() {
    int m = sqrt(n * 1.0);
    for (int i = m; i >= 1; i--) {
	if (judge(i)) {
	    return true;
	}
    }
    return false;
}

int main() {
    while (~scanf("%d%d", &n, &k)) {
	if (solve()) printf("YES\n");
	else printf("NO\n");
    }
    return 0;
}
时间: 2024-10-24 12:21:24

HDU 4982 Goffi and Squary Partition(推理)的相关文章

HDU 4982 Goffi and Squary Partition(BestCoder Round #6 1002)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4982 解析: 题意: 给你N和K,问能否将N拆分成K个互不相同的正整数,并且其中K-1个数的和为完全平方数     实际上,一拿到题目,我先想了下这里会不会存在负数或者0,后来经过几次华丽丽的WA之后发现,这题确实不用考虑到非正数.但是还是想吐槽一下,这个题目的意思也有点儿太不明晰了...     再说回题目来,我们枚举所有的完全平方数i*i,然后看能否将他拆成k-1个数,并且用不到n-i*i.所以

hdu 4982 Goffi and Squary Partition

Goffi and Squary Partition Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1442 Accepted Submission(s): 479 Problem Description Recently, Goffi is interested in squary partition of integers. A set

[BestCoder Round #6] hdu 4982 Goffi and Squary Partition(构造)

Goffi and Squary Partition Problem Description Recently, Goffi is interested in squary partition of integers. A set X of k distinct positive integers is called squary partition of n if and only if it satisfies the following conditions: the sum of k p

hdu 4982 Goffi and Squary Partition (枚举)

//给出n和k,求k个不同的正整数,使其中k-1个数能组成平方数,k个数的和为n.有解输出YES,无解输出NO. # include <stdio.h> # include <string.h> # include <algorithm> # include <math.h> using namespace std; int n,k; bool judge(int num) { int yy=num*num;//k-1个数相加 int kk=n-yy; if

HDOJ 4982 Goffi and Squary Partition

Goffi and Squary Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 374    Accepted Submission(s): 145 Problem Description Recently, Goffi is interested in squary partition of integers.

【HDOJ】4982 Goffi and Squary Partition

题意就是整数划分,选出和为n的K个整数,其中K-1个数的和为完全平方数S.选择整数时需要从1,2,3..连续选择,当选择整数与n-S相等时,需要跳过n-S,即选择n-S+1.如此选择K-2个数,从而可确定第K-1个数,若该数已经出现(小于或等于K-2),则划分失败:若第K-1个数不等于n-S,则肯定划分成功,否则K-1个数若等于n-S.即需要通过将第K-2个数+1,同时第K-1个数-1得到正确的划分,并且需要保证调整后第K-2个数仍小于第K-1个数,因此,两数之间的距离至少大于2. 1 #inc

hdu4982 Goffi and Squary Partition (DFS解法)

BestCoder Round #6 B http://acm.hdu.edu.cn/showproblem.php?pid=4982 Goffi and Squary Partition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 308    Accepted Submission(s): 106 Problem Descrip

Goffi and Squary Partition

题意: 给你N和K,问能否将N拆分成K个互不相同的正整数,并且其中K-1个数的和为完全平方数. PS:这道题目原来是要求输出一种可行方案的,所以下面题解是按照输出方案的思想搞的. 分析: 我们尝试枚举那个完全平方数S,然后看能否将他拆分为 K-1 个数,并且不用到N-S 这一步可以用贪心+一次调整来搞定.为了保证 K-1个数都不同,我们尝试尽量用 1,2,3...这些连续自然数来构造,如果 N-S 出现在这些数中,那么将 N-S 移除,再新加一个数.如果这样都不能拆分成 K-1 个数,那么这个

HDU 4981 Goffi and Median(水)

HDU 4981 Goffi and Median 思路:排序就可以得到中间数,然后总和和中间数*n比较一下即可 代码: #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int N = 1005; int n, a[N], sum; int main() { while (~scanf("%d&