斯坦福-随机图模型-week3.0_



title: 斯坦福-随机图模型-week3.0

tags: note

notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation

---

斯坦福-随机图模型-week3.0

马尔科夫网络

pairwise markov networks 成对马尔科夫模型

图论模型中有有向图和无向图,对于无向图来说,运用到随机图论中就是马尔科夫模型。

在马尔科夫模型中,有一种模型十分有趣,他是成对马尔科夫模型。

我们首先看一个例子:

四个学生同时进行学习,并且他们会相互进行影响。

infinity function / compatibility funcutions.

加入老师再课堂上出现了一次口误,那个他们中的误解是如何进行相互影响的呢?

这个表格描述了两个人的快乐程度,如果两个人都听对了,那么他们都会获得30的快乐程度,如果两个人都听错了,那么他们的快乐程度也会很高。如果一个人听对了另外一个人听错了,那么他们的快乐程度就会相对比较低。

同样的我们可以为所有的联系都定义他们的快乐程度:

我们可以将所有的快乐程度相乘起来来获得一个综合的指数:

然后我们就可以对所有的幸福程度进行汇总,然后乘以相应的归一化系数,将他的和归为1。

好的我们现在可以讨论下理论上的事情了:

相关的术语

  1. 边界概率
  2. 条件概率
  3. 边界概率的条件概率

正常吉布斯分布

假设再一个全部互联的马尔科夫模型中。

我们考虑一个问题

**再一个全互联的马尔科夫网络中,如果共有n个变量,每个变量有d个值,那么一共需要多少参数才能描述我们的马尔科夫网络呢。

这个问题我们这样分析他,我们有个边,因此关联的矩阵的边长是d

所以我们有

吉布斯分布式用来简便的生成这些参数的。

我们使用标准参数

就是再重复我们前面例子里的工作,我们通过定义每条边的情况定义所有的gibbs因子:

然后把他们乘在一起:

然后我们对得到的数据进行标准化

触发形马尔科夫网络

触发形马尔科夫网络是一种,形成环的网络,比如是这样:

在上图中分别描述了

形成的环

因子化

直接使用问题讨论:

上面这三个都是正确的,因为他们都能表示相应的拓扑结构。

条件随机领域

原文地址:https://www.cnblogs.com/zangzelin/p/8575258.html

时间: 2024-10-27 10:09:05

斯坦福-随机图模型-week3.0_的相关文章

斯坦福-随机图模型-week3.3_

title: 斯坦福-随机图模型-week3.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.3 习题 1. Question 1 I-Maps. Graph G (shown below) is a perfect I-map for distribution P, i.e. I(G)=I(P). Which of the other gr

斯坦福-随机图模型-week1.0_

title: 斯坦福-随机图模型-week2.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.0 模板模型(Template Models) 在实际的模型的建立的过程中,会出现很多的重复的情况.比如在如下的模型中: 有很多的重复的结构,比如每一个的基因型都和表现形直接相关.而且每一个基因型都和两个前代的基因型十分的相关. 或者在自然语言处理的

斯坦福-随机图模型-week1.1_

title: 斯坦福-随机图模型-week1.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.1 练习 1.第 1 个问题 Factor product. Let X,Y and Z be binary variables. If ?1(X,Y) and ?2(Y,Z) are the factors shown below, compute

斯坦福-随机图模型-week1.5

title: 斯坦福-随机图模型-week1.5 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.5 贝叶斯网络 朴素贝叶斯 朴素贝叶斯是一个概率的分类模型,下面我们用概率图的思想去理解他.他转化成概率图模型可以描述成如下: 原文地址:https://www.cnblogs.com/zangzelin/p/8502825.html

斯坦福-随机图模型-week1.5_

title: 斯坦福-随机图模型-week1.5 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.5 贝叶斯网络 朴素贝叶斯 朴素贝叶斯是一个概率的分类模型,下面我们用概率图的思想去理解他.他转化成概率图模型可以描述成如下: 第一层是一个分类的随机变量,描述事物的分类: 第二层是多个特征的随机变量,也就是说这是一个从分类到特征的概率图模型,我们有

斯坦福-随机图模型-week1.4_

title: 斯坦福-随机图模型-week1.4 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.4 独立性 preliminaries 初步 独立的数学描述 对于事建 a, b 如果是独立的那么使用如下的符号进行描述 独立的事件有以下的性质: 对于随机变量有相似的表示 一个例子 还是用之前的成绩问题作为例子: 我们可以看到P(I,D)的矩阵中,

斯坦福-随机图模型-week2.1_

title: 斯坦福-随机图模型-week2.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.1 plate model 模板模型 4. Plate 模型 时序模板模型,通常还有一类情况需要模板模型:问题中有多个相同类型的不同对象,希望建立模板对这些对象进行统一考虑. 4.1 硬币采样例子 如何理解 Plate 模型的机制,以最简单的硬币采样

斯坦福-随机图模型-week2.2_

title: 斯坦福-随机图模型-week2.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.2 习题 1.第 1 个问题 Markov Assumption. If a dynamic system X satisfies the Markov assumption for all time t≥0, which of the follow

python图工具中基于随机块模型动态网络社团检测

原文链接:http://tecdat.cn/?p=7602 这是“政治博客圈和2004年美国大选”中的政治博客网络图,但是边缘束是使用随机块模型确定的(注:下图与图相同(即,布局和数据相同)). Tiago论文中的5-我只是在上面放了一个黑色背景 . 边缘配色方案与Adamic和Glance的原始论文中的相同,即每个节点对应一个博客URL,颜色反映政治取向,红色代表保守派,蓝色代表自由派.橙色边从自由派博客到保守派博客,紫色边从保守派到自由派(参见Adamic和Glance中的图1). 颜色方案