Description
Consider equations having the following form:
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
The only line of input contains the 5 coefficients a1, a2, a3, a4, a5, separated by blanks.
Output
The output will contain on the first line the number of the solutions for the given equation.
Sample Input
37 29 41 43 47
Sample Output
654题意:求a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 在x∈[-50,50]且x!=0的解的个数x1=a且x2=b与x1=b且x2=a算两个解题解:因为a1,a2,a3,a4,a5是固定的,所以只需要枚举x1,x2,x3,x4,x5即可复杂度为O(n^5)等等!O(n^5)?!这是要t的节奏啊该怎么办呢?改下公式吧~
a3x33+ a4x43+ a5x53=-a1x13 -a2x23
这样先枚举右边的解数,再枚举x3,x4,x5,看看满不满足右边即可这种折半枚举的思路很好,至于如何检验满不满足,本来是准备用map的,结果t了于是只好hash了……最好打的hash704ms,好像也不坏至于poj的abs……emmm也是醉了代码如下:
#pragma GCC optimize(2) #include<map> #include<vector> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define inf 0x3f3f3f3f using namespace std; vector<long long> g[100010]; int a1,a2,a3,a4,a5,ans; int main() { scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5); for(int i=-50; i<=50; i++) { if(!i) { continue; } for(int j=-50; j<=50; j++) { if(!j) { continue; } long long x=a1*(i*i*i)+a2*(j*j*j); int key=x<0?(-x)%99991:x%99991; g[key].push_back(x); } } for(int i=-50; i<=50; i++) { if(!i) { continue; } for(int j=-50; j<=50; j++) { if(!j) { continue; } for(int k=-50; k<=50; k++) { if(!k) { continue; } long long y=a3*(i*i*i)+a4*(j*j*j)+a5*(k*k*k); int key=y<0?(-y)%99991:y%99991; for(int w=0;w<g[key].size();w++) { if(g[key][w]==-y) { ans++; } } } } } printf("%d\n",ans); }
原文地址:https://www.cnblogs.com/stxy-ferryman/p/8470188.html
时间: 2024-10-07 10:43:49