keras 保存模型

转自:https://blog.csdn.net/u010159842/article/details/54407745,感谢分享!

我们不推荐使用pickle或cPickle来保存Keras模型

你可以使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:

  • 模型的结构,以便重构该模型
  • 模型的权重
  • 训练配置(损失函数,优化器等)
  • 优化器的状态,以便于从上次训练中断的地方开始

使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译

例子:

from keras.models import load_model

model.save(‘my_model.h5‘)  # creates a HDF5 file ‘my_model.h5‘
del model  # deletes the existing model

# returns a compiled model
# identical to the previous one
model = load_model(‘my_model.h5‘)

如果你只是希望保存模型的结构,而不包含其权重或配置信息,可以使用:

# save as JSON
json_string = model.to_json()

# save as YAML
yaml_string = model.to_yaml()

这项操作将把模型序列化为json或yaml文件,这些文件对人而言也是友好的,如果需要的话你甚至可以手动打开这些文件并进行编辑。

当然,你也可以从保存好的json文件或yaml文件中载入模型:

# model reconstruction from JSON:
from keras.models import model_from_json
model = model_from_json(json_string)

# model reconstruction from YAML
model = model_from_yaml(yaml_string)

如果需要保存模型的权重,可通过下面的代码利用HDF5进行保存。注意,在使用前需要确保你已安装了HDF5和其Python库h5py

model.save_weights(‘my_model_weights.h5‘)

如果你需要在代码中初始化一个完全相同的模型,请使用:

model.load_weights(‘my_model_weights.h5‘)

如果你需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,你可以通过层名字来加载模型:

model.load_weights(‘my_model_weights.h5‘, by_name=True)

例如:

"""
假如原模型为:
    model = Sequential()
    model.add(Dense(2, input_dim=3, name="dense_1"))
    model.add(Dense(3, name="dense_2"))
    ...
    model.save_weights(fname)
"""
# new model
model = Sequential()
model.add(Dense(2, input_dim=3, name="dense_1"))  # will be loaded
model.add(Dense(10, name="new_dense"))  # will not be loaded

# load weights from first model; will only affect the first layer, dense_1.
model.load_weights(fname, by_name=True)

原文地址:https://www.cnblogs.com/baiting/p/8711078.html

时间: 2024-11-09 03:15:15

keras 保存模型的相关文章

Keras保存模型

保存模型 model.save_weights('model_weights.h5') 加载模型 先初始化模型 model.load_weights('model_weights.h5') 原文地址:https://www.cnblogs.com/rise0111/p/11621651.html

caffe使用ctrl-c不能保存模型

caffe使用Ctrl-c 不能保存模型: 是因为使用的是 tee输出日志 解决方法:kill -s SIGINT <proc_id> 或者使用 GLOG_log_dir=/path/to/log/dir $CAFFE_ROOT/bin/caffee.bin train -solver=/path/to/solver.prototxt 来输出日志

pytorch1.0 用torch script导出保存模型

python的易上手和pytorch的动态图特性,使得pytorch在学术研究中越来越受欢迎,但在生产环境,碍于python的GIL等特性,可能达不到高并发.低延迟的要求,存在需要用c++接口的情况.除了将模型导出为ONNX外,pytorch1.0给出了新的解决方案:pytorch 训练模型 - 通过torch script中间脚本保存模型 -- C++加载模型.最近工作需要尝试做了转换,总结一下步骤和遇到的坑. 用torch script把torch模型转成c++接口可读的模型有两种方式:tr

[Pytorch]Pytorch 保存模型与加载模型(转)

转自:知乎 目录: 保存模型与加载模型 冻结一部分参数,训练另一部分参数 采用不同的学习率进行训练 1.保存模型与加载 简单的保存与加载方法: # 保存整个网络 torch.save(net, PATH) # 保存网络中的参数, 速度快,占空间少 torch.save(net.state_dict(),PATH) #-------------------------------------------------- #针对上面一般的保存方法,加载的方法分别是: model_dict=torch.

Tensorflow中保存模型时生成的各种文件区别和作用

假如我们得到了如下的checkpoints, 上面的文件主要可以分成三类:一种是在保存模型时生成的文件,一种是我们在使用tensorboard时生成的文件,还有一种就是plugins这个文件夹,这个是使用capture tpuprofile工具生成的,该工具可以跟踪TPU的计算过程,并对你的模型性能进行分析,这里就不想详细介绍了.本文主要介绍前面两种文件的作用: tensorboard文件 events.out.tfevents.*...: 保存的就是你的accuracy或者loss在不同时刻的

TensorFlow-keras fit的callbacks参数,定值保存模型

from tensorflow.python.keras.preprocessing.image import load_img,img_to_array from tensorflow.python.keras.models import Sequential,Model from tensorflow.python.keras.layers import Dense,Flatten,Input import tensorflow as tf from tensorflow.python.ke

Keras序列模型学习

转自:https://keras.io/zh/getting-started/sequential-model-guide/ 1.顺序模型是多个网络层的线性堆叠. 你可以通过将网络层实例的列表传递给 Sequential 的构造器,来创建一个 Sequential 模型: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, inp

Tensorflow加载预训练模型和保存模型

1. Tensorflow模型文件 (1)checkpoint 该文件是文本文件,里面记录了保存的最新的checkpoint文件以及其他checkpoint文件列表.在测试的时候,可以通过修改这个文件,指定具体使用哪个模型 (2)meta文件 这个文件保存的是计算图结构,可以理解为神经网络结构图.是一个二进制的pb格式文件,包含变量.op.集合等. (3)ckpt文件 ckpt文件是二进制文件,保存了所有的weights.biases.gradients等变量.在tensorflow 0.11之

Pytorch加载和保存模型

首先注明,参考了这篇博客https://www.jianshu.com/p/4905bf8e06e5 方法1. 先序列化,格式可以是mdl,pt等 torch.save(model.state_dict(), MODEL_PATH) 然后反序列化,再加载 model.load_state_dict(torch.load(MODEL_PATH)) 方法2. 保存整个模型,格式可以是pth.tar torch.save(model, PATH) 然后加载 model = torch.load(PAT