C#中八皇后问题的递归解法——N皇后

百度测试部2015年10月份的面试题之——八皇后。

八皇后问题的介绍在此。以下是用递归思想实现八皇后-N皇后。

代码如下:

using System;using System.Collections.Generic;

namespace QueensSolution
{
    class Program
    {
        static int count = 0;
        static void Main(string[] args)
        {
            int n = Int32.Parse(Console.ReadLine());
            List<int> queen = new List<int>(n);
            for (int i = 1; i <= n; i++)
            {
                queen.Add(0);
            }
            PutQueen(n, queen, 0);
            Console.WriteLine(count);
            Console.ReadKey();
        }

        private static void PutQueen(int n, List<int> queen, int row)
        {
            for (queen[row] = 1; queen[row] <= n; queen[row]++)
            {
                if (CheckQueens(queen, row))
                {
                    row++;
                    if (row < n)
                    {
                        PutQueen(n, queen, row);
                    }
                    else
                    {
                        count++;
                        for (int i = 0; i < n; i++)
                        {
                            Console.Write(queen[i].ToString() + " ");
                        }
                        Console.WriteLine();
                    }
                    row--;
                }
            }
        }

        private static bool CheckQueens(List<int> queen, int row)
        {
            for (int i = 0; i < row; i++)
            {
                if (Math.Abs(queen[i] - queen[row]) == Math.Abs(i - row) || queen[i] == queen[row])
                {
                    return false;
                }
            }
            return true;
        }
    }
}

解释:

1.要想解出在n*n的棋盘上到底有多少种放置皇后的方法,主要用到两个方法,放皇后的PutQueen方法,检查皇后的CheckQueens方法。

2.在Main函数里对动态数组进行初始化,这个动态数组用来记录N皇后中每一行所放置的皇后的位置(1就代表放置在该行第一列,n就代表放置在该行的第n列)。

3.row代表的是八皇后棋盘的每一行。

4.在Main函数中对动态数组进行了一下初始化,这一步是必须的,否则运行结果报错。

5.变量count(解的个数)声明在Main函数外,是静态的。

6.PutQueen方法采用递归思想——放皇后(该行中每一列都要放置),检查放皇后的位置是否合理,如果合理则到下一行,判断下一行是否存在,如果存在——放皇后(该行中每一列都要放置),检查放皇后的位置是否合理,如果合理则……直到不存在下一行为止每一行都已经放置好了皇后,这时我们将解的个数记录一下(count++),然后打印该种解法。

7.在递归结束后,一定要记得返回到上一行(row--),这样才能让“for (queen[row] = 1; queen[row] <= n; queen[row]++)”生效,实现每一行中的每一列都放置过皇后。一定要注意row--的位置要放在整个if-else语句块的后面!因为整个if-else语句块形成了对递归过程中状态的判断,有两种状态,第一种状态是皇后当前在第2到n-1行,这时候如果想返回上一行,“row--”的位置其实可以写在if语句块中"PutQueen(n, queen, row);"这一句的后面;第二种状态是皇后当前在最后一行(也就是第n行),这时候如果想返回上一行,“row--”的位置其实可以写在else语句块中。因此,我们才将“row--”的位置移到了整个if-else语句块的后面。

时间: 2024-12-13 09:34:26

C#中八皇后问题的递归解法——N皇后的相关文章

N皇后问题(递归)

//八皇后递归解法 //#include<iostream> //using namespace std; #include<stdio.h> int queen[9] = {-1,-1,-1,-1,-1,-1,-1,-1,-1}; int count = 0;//定义一个全局变量 int n;//(推广到n个皇后问题) bool available(int pointi,int pointj) //判断某个皇后是否与已有皇后冲突 { for(int i = 1; i<poi

八皇后问题,递归法实现

八皇后问题,是19世纪著名的数学家高斯在1850年提出的:在8×8格的国际象棋盘上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列.同一斜线上,试问有多少种摆法?高斯先生给出的答案是“76”种,实际是76种吗? 八皇后问题是回溯算法的典型应用,但是本文提供递归的求法. 递归的核心思想可以总结成:把一个复杂的问题无限缩小,每个小问题的解法都是一样的,最终归结于求解每个小问题的原型.递归编程的思路可以假设所有的问题都已解决,来到结束条件,这是非常简单的,然后再调用自身求解整个问

【回溯法】八皇后问题(递归和非递归)

先贴代码,分递归回溯法和非递归回溯法 递归回溯法,代码如下: // test.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include <iostream> #include <stdio.h> using namespace std; int a[9] = {0}; int n = 8; int count = 0; bool check

二叉树中节点的最大距离(树的最长路径)——递归解法

上一篇文章说的是该题的一种变形,并给出了非递归解法. 现在我给出原题的一种递归解法.将会看到,现比较上篇博文,今天给出的递归解法的代码实现是相当简洁的. 问题描述: 如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数. 写一个程序,求一棵二叉树中相距最远的两个节点之间的距离.测试用的树: n1 /             \ n2             n3 /        \ n4          n5 /     \    

变形二叉树中节点的最大距离(树的最长路径)——非递归解法

问题描述: 如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数. 写一个程序,求一棵二叉树中相距最远的两个节点之间的距离.测试用的树: n1 /             \ n2             n3 /        \ n4          n5 /     \         /   \ n6    n7    n8    n9 /                       / n10                

二叉树的先序、中序、后序、层次遍历的递归和非递归解法

二叉树的先序.中序.后序.层次遍历的递归和非递归解法 package tree; import java.util.LinkedList; import java.util.Queue; import java.util.Stack; public class TreeTraverse { /** * 先序递归 * @param root */ public static void preOrderTraverse(TreeNode root) { if (root == null) { ret

[LeetCode系列]N皇后问题递归解法 -- 位操作方式

N皇后问题: 给定8*8棋盘, 放置n个皇后, 使其互相不能攻击(即2个皇后不能放在同一行/列/正反对角线上), 求解共有多少种放置方式? 这个问题的解答网上有不少, 但是位操作解法的我看到的不多. 下面贴出代码和图解, 也就不赘述了. 1 class Solution { 2 public: 3 /* 使用位操作实现的回溯算法. 按行扫描, 检测可以放置的列. 4 * 'limit' - 都是 '1'. 代表着所有列都被占据了 5 * 'h' - 是目前所有皇后列在行上的垂直投影. 如果 h=

ACM中杨辉三角的多种解法

杨辉三角的多种解法 杨辉三角的相信大家很熟悉吧,但是大家能用多少中方法写出来呀,一般人都只会想到两种,递归和二项式.当用递推时,有时在解题是根本没必要需要那么多呀,而只要杨辉三角的某一行,数据小时,我们可以用二项式来计算,但是数据比较大时,二项式算也是很麻烦的,那么还有其它的方法吗?所以下面我就介绍几种计算杨辉三角的方法吧. 主要要记住第四种.... 完整版下载:http://download.csdn.net/detail/u010304217/7750997 博客版下载:http://dow

[LeetCode系列]爬梯问题的递归解法转换为迭代解法

有一个n阶的梯子, 你每次只能爬1阶或2阶, 请问共有多少种登顶的爬法?(正好爬完n阶, 不能多也不能少) 本题最优解是直接套用菲波那切数列即可(因为菲波那切数列的第n个元素正好等于第n-1个元素和第n-2个元素的和, 与本题的要求完全相同). 递归解法: 1 int climbStairs(int n) { 2 if (n < 3) return n; 3 return climbStairs(n-1) + climbStairs(n-2); 4 } 思路很清晰, 递归到当前阶数小于3阶时返回