mapreduce的join

一篇超级详细的文章:this one

读完之后感触颇深,什么时候在map的时候join什么时候在reducer的时候join

之前写两个输入的时候,写的多么可笑,效率极低。

先用了一遍这篇文章的分布式缓存,在reduce的时候读取,因为hadoop版本太低,所以又做了修改,导师

时间: 2024-12-10 11:49:33

mapreduce的join的相关文章

Hadoop.2.x_高级应用_二次排序及MapReduce端join

一.对于二次排序案例部分理解 1. 分析需求(首先对第一个字段排序,然后在对第二个字段排序) 杂乱的原始数据 排序完成的数据 a,1 a,1 b,1 a,2 a,2 [排序] a,100 b,6 ===> b,-3 c,2 b,-2 b,-2 b,1 a,100 b,6 b,-3 c,-7 c,-7 c,2 2. 分析[MapRedice过程] 1> 分析数据传入通过input()传入map() 2> map()对数据进行层层过滤,以达到我们想要的数据源, 3> 过滤方法中可添加自

MapReduce多种join实现实例分析(二)

上一篇<MapReduce多种join实现实例分析(一)>,大家可以点击回顾该篇文章.本文是MapReduce系列第二篇. 一.在Map端进行连接使用场景:一张表十分小.一张表很大.用法:在提交作业的时候先将小表文件放到该作业的DistributedCache中,然后从DistributeCache中取出该小表进行join key / value解释分割放到内存中(可以放大Hash Map等等容器中).然后扫描大表,看大表中的每条记录的join key /value值是否能够在内存中找到相同j

MapReduce Map Join 样例

1. 样例数据 011990-99999 SIHCCAJAVRI 012650-99999 TYNSET-HANSMOEN 012650-99999 194903241200 111 012650-99999 194903241800 78 011990-99999 195005150700 0 011990-99999 195005151200 22 011990-99999 195005151800 -11 2. 需求 3. 思路.代码 将足够小的关联文件(即气象台信息)添加到分布式缓存,然

Hadoop中MapReduce多种join实现实例分析

一.概述 对于RDBMS中的join操作大伙一定非常熟悉,写sql的时候要十分注意细节,稍有差池就会耗时巨久造成很大的性能瓶颈,而在Hadoop中使用MapReduce框架进行join的操作时同样耗时,但是由于hadoop的分布式设计理念的特殊性,因此对于这种join操作同样也具备了一定的特殊性.本文主要对MapReduce框架对表之间的join操作的几种实现方式进行详细分析,并且根据我在实际开发过程中遇到的实际例子来进行进一步的说明. 二.实现原理 1.在Reudce端进行连接. 在Reudc

大数据【四】MapReduce(单词计数;二次排序;计数器;join;分布式缓存)

   前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分布式缓存). 一 概述 定义 MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE).这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间. 适用范围:数据量大,但是数据种类小可以放入内存. 基

mapreduce join操作

上次和朋友讨论到mapreduce,join应该发生在map端,理由太想当然到sql里面的执行过程了 wheremap端 join在map之前(笛卡尔积),但实际上网上看了,mapreduce的笛卡尔积发生在reduce端,下面哥们有个实现过程可以参考(http://blog.csdn.net/xyilu/article/details/8996204).有空再看看 实际上实现过程是不是和他写的代码一样. 前阵子把MapReduce实现join操作的算法设想清楚了,但一直没有在代码层面落地.今天

MapReduce 实现数据join操作

前段时间有一个业务需求,要在外网商品(TOPB2C)信息中加入 联营自营 识别的字段.但存在的一个问题是,商品信息 和 自营联营标示数据是 两份数据:商品信息较大,是存放在hbase中.他们之前唯一的关联是url.所以考虑用url做key将两者做join,将 联营自营标识 信息加入的商品信息中,最终生成我需要的数据: 一,首先展示一下两份数据的demo example 1. 自营联营标识数据(下面开始就叫做unionseller.txt) http://cn.abc.www/product436

MapReduce实现两表join

一.方法介绍 假设要进行join的数据分别来自File1和File2. 参考:https://blog.csdn.net/yimingsilence/article/details/70242604 1.1 reduce side join reduce side join是一种最简单的join方式,其主要思想如下:在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,t

MapReduce实现两表的Join--原理及python和java代码实现

用Hive一句话搞定的,但是有时必须要用mapreduce 方法介绍 1. 概述 在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的.而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧. 本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数据集的优化方法. 2. 常见的join方法介绍 假设要进行join的数据分别来自File1和File2. 2.1 reduce side jo