Java fail-fast机制

本文转载自cmsblogs chenssy

原文地址:http://cmsblogs.com/?p=1220

本文仅供本人学习参考使用,如有侵权立即删除。

在JDK的Collection中我们时常会看到类似于这样的话:

例如,ArrayList:

注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误的做法:迭代器的快速失败行为应该仅用于检测 bug。

HashMap中:

注意,迭代器的快速失败行为不能得到保证,一般来说,存在非同步的并发修改时,不可能作出任何坚决的保证。快速失败迭代器尽最大努力抛出 ConcurrentModificationException。因此,编写依赖于此异常的程序的做法是错误的,正确做法是:迭代器的快速失败行为应该仅用于检测程序错误。

在这两段话中反复地提到”快速失败”。那么何为”快速失败”机制呢?

“快速失败”也就是fail-fast,它是Java集合的一种错误检测机制。当多个线程对集合进行结构上的改变的操作时,有可能会产生fail-fast机制。记住是有可能,而不是一定。例如:假设存在两个线程(线程1、线程2),线程1通过Iterator在遍历集合A中的元素,在某个时候线程2修改了集合A的结构(是结构上面的修改,而不是简单的修改集合元素的内容),那么这个时候程序就会抛出 ConcurrentModificationException 异常,从而产生fail-fast机制。

一、fail-fast示例

public class FailFastTest {
    private static List<Integer> list = new ArrayList<>();

    /**
     * @desc:线程one迭代list
     * @Project:test
     * @file:FailFastTest.java
     * @Authro:chenssy
     * @data:2014年7月26日
     */
    private static class threadOne extends Thread{
        public void run() {
            Iterator<Integer> iterator = list.iterator();
            while(iterator.hasNext()){
                int i = iterator.next();
                System.out.println("ThreadOne 遍历:" + i);
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    /**
     * @desc:当i == 3时,修改list
     * @Project:test
     * @file:FailFastTest.java
     * @Authro:chenssy
     * @data:2014年7月26日
     */
    private static class threadTwo extends Thread{
        public void run(){
            int i = 0 ;
            while(i < 6){
                System.out.println("ThreadTwo run:" + i);
                if(i == 3){
                    list.remove(i);
                }
                i++;
            }
        }
    }

    public static void main(String[] args) {
        for(int i = 0 ; i < 10;i++){
            list.add(i);
        }
        new threadOne().start();
        new threadTwo().start();
    }
}

运行结果:

ThreadOne 遍历:0
ThreadTwo run:0
ThreadTwo run:1
ThreadTwo run:2
ThreadTwo run:3
ThreadTwo run:4
ThreadTwo run:5
Exception in thread "Thread-0" java.util.ConcurrentModificationException
    at java.util.ArrayList$Itr.checkForComodification(Unknown Source)
    at java.util.ArrayList$Itr.next(Unknown Source)
    at test.ArrayListTest$threadOne.run(ArrayListTest.java:23)

二、fail-fast产生原因

通过上面的示例和讲解,我初步知道fail-fast产生的原因就在于程序在对 collection 进行迭代时,某个线程对该 collection 在结构上对其做了修改,这时迭代器就会抛出 ConcurrentModificationException 异常信息,从而产生 fail-fast。

要了解fail-fast机制,我们首先要对ConcurrentModificationException 异常有所了解。当方法检测到对象的并发修改,但不允许这种修改时就抛出该异常。同时需要注意的是,该异常不会始终指出对象已经由不同线程并发修改,如果单线程违反了规则,同样也有可能会抛出改异常。

诚然,迭代器的快速失败行为无法得到保证,它不能保证一定会出现该错误,但是快速失败操作会尽最大努力抛出ConcurrentModificationException异常,所以因此,为提高此类操作的正确性而编写一个依赖于此异常的程序是错误的做法,正确做法是:ConcurrentModificationException 应该仅用于检测 bug。下面我将以ArrayList为例进一步分析fail-fast产生的原因。

从前面我们知道fail-fast是在操作迭代器时产生的。现在我们来看看ArrayList中迭代器的源代码:

private class Itr implements Iterator<E> {
        int cursor;
        int lastRet = -1;
        int expectedModCount = ArrayList.this.modCount;

        public boolean hasNext() {
            return (this.cursor != ArrayList.this.size);
        }

        public E next() {
            checkForComodification();
            /** 省略此处代码 */
        }

        public void remove() {
            if (this.lastRet < 0)
                throw new IllegalStateException();
            checkForComodification();
            /** 省略此处代码 */
        }

        final void checkForComodification() {
            if (ArrayList.this.modCount == this.expectedModCount)
                return;
            throw new ConcurrentModificationException();
        }
    }

从上面的源代码我们可以看出,迭代器在调用next()、remove()方法时都是调用checkForComodification()方法,该方法主要就是检测modCount == expectedModCount ? 若不等则抛出ConcurrentModificationException 异常,从而产生fail-fast机制。所以要弄清楚为什么会产生fail-fast机制我们就必须要用弄明白为什么modCount != expectedModCount ,他们的值在什么时候发生改变的。

expectedModCount 是在Itr中定义的:int expectedModCount = ArrayList.this.modCount;所以他的值是不可能会修改的,所以会变的就是modCount。modCount是在 AbstractList 中定义的,为全局变量:

protected transient int modCount = 0;

那么他什么时候因为什么原因而发生改变呢?请看ArrayList的源码:

    public boolean add(E paramE) {
        ensureCapacityInternal(this.size + 1);
        /** 省略此处代码 */
    }

    private void ensureCapacityInternal(int paramInt) {
        if (this.elementData == EMPTY_ELEMENTDATA)
            paramInt = Math.max(10, paramInt);
        ensureExplicitCapacity(paramInt);
    }

    private void ensureExplicitCapacity(int paramInt) {
        this.modCount += 1;    //修改modCount
        /** 省略此处代码 */
    }

   public boolean remove(Object paramObject) {
        int i;
        if (paramObject == null)
            for (i = 0; i < this.size; ++i) {
                if (this.elementData[i] != null)
                    continue;
                fastRemove(i);
                return true;
            }
        else
            for (i = 0; i < this.size; ++i) {
                if (!(paramObject.equals(this.elementData[i])))
                    continue;
                fastRemove(i);
                return true;
            }
        return false;
    }

    private void fastRemove(int paramInt) {
        this.modCount += 1;   //修改modCount
        /** 省略此处代码 */
    }

    public void clear() {
        this.modCount += 1;    //修改modCount
        /** 省略此处代码 */
    }

从上面的源代码我们可以看出,ArrayList中无论add、remove、clear方法只要是涉及了改变ArrayList元素的个数的方法都会导致modCount的改变。所以我们这里可以初步判断由于expectedModCount 得值与modCount的改变不同步,导致两者之间不等从而产生fail-fast机制。知道产生fail-fast产生的根本原因了,我们可以有如下场景:

有两个线程(线程A,线程B),其中线程A负责遍历list、线程B修改list。线程A在遍历list过程的某个时候(此时expectedModCount = modCount=N),线程启动,同时线程B增加一个元素,这是modCount的值发生改变(modCount + 1 = N + 1)。线程A继续遍历执行next方法时,通告checkForComodification方法发现expectedModCount  = N  ,而modCount = N + 1,两者不等,这时就抛出ConcurrentModificationException 异常,从而产生fail-fast机制。

所以,直到这里我们已经完全了解了fail-fast产生的根本原因了。知道了原因就好找解决办法了。

三、fail-fast解决办法

通过前面的实例、源码分析,我想各位已经基本了解了fail-fast的机制,下面我就产生的原因提出解决方案。这里有两种解决方案:

方案一:在遍历过程中所有涉及到改变modCount值得地方全部加上synchronized或者直接使用Collections.synchronizedList,这样就可以解决。但是不推荐,因为增删造成的同步锁可能会阻塞遍历操作。

方案二:使用CopyOnWriteArrayList来替换ArrayList。推荐使用该方案。

CopyOnWriteArrayList为何物?ArrayList 的一个线程安全的变体,其中所有可变操作(add、set 等等)都是通过对底层数组进行一次新的复制来实现的。 该类产生的开销比较大,但是在两种情况下,它非常适合使用。1:在不能或不想进行同步遍历,但又需要从并发线程中排除冲突时。2:当遍历操作的数量大大超过可变操作的数量时。遇到这两种情况使用CopyOnWriteArrayList来替代ArrayList再适合不过了。那么为什么CopyOnWriterArrayList可以替代ArrayList呢?

第一、CopyOnWriterArrayList的无论是从数据结构、定义都和ArrayList一样。它和ArrayList一样,同样是实现List接口,底层使用数组实现。在方法上也包含add、remove、clear、iterator等方法。

第二、CopyOnWriterArrayList根本就不会产生ConcurrentModificationException异常,也就是它使用迭代器完全不会产生fail-fast机制。请看:

private static class COWIterator<E> implements ListIterator<E> {
        /** 省略此处代码 */
        public E next() {
            if (!(hasNext()))
                throw new NoSuchElementException();
            return this.snapshot[(this.cursor++)];
        }

        /** 省略此处代码 */
    }

CopyOnWriterArrayList的方法根本就没有像ArrayList中使用checkForComodification方法来判断expectedModCount 与 modCount 是否相等。它为什么会这么做,凭什么可以这么做呢?我们以add方法为例:

public boolean add(E paramE) {
        ReentrantLock localReentrantLock = this.lock;
        localReentrantLock.lock();
        try {
            Object[] arrayOfObject1 = getArray();
            int i = arrayOfObject1.length;
            Object[] arrayOfObject2 = Arrays.copyOf(arrayOfObject1, i + 1);
            arrayOfObject2[i] = paramE;
            setArray(arrayOfObject2);
            int j = 1;
            return j;
        } finally {
            localReentrantLock.unlock();
        }
    }

    final void setArray(Object[] paramArrayOfObject) {
        this.array = paramArrayOfObject;
    }

CopyOnWriterArrayList的add方法与ArrayList的add方法有一个最大的不同点就在于,下面三句代码:

Object[] arrayOfObject2 = Arrays.copyOf(arrayOfObject1, i + 1);
arrayOfObject2[i] = paramE;
setArray(arrayOfObject2);

就是这三句代码使得CopyOnWriterArrayList不会抛ConcurrentModificationException异常。他们所展现的魅力就在于copy原来的array,再在copy数组上进行add操作,这样做就完全不会影响COWIterator中的array了。

所以CopyOnWriterArrayList所代表的核心概念就是:任何对array在结构上有所改变的操作(add、remove、clear等)CopyOnWriterArrayList都会copy现有的数据,再在copy的数据上修改,这样就不会影响COWIterator中的数据了,修改完成之后改变原有数据的引用即可。同时这样造成的代价就是产生大量的对象,同时数组的copy也是相当有损耗的。

时间: 2024-08-04 22:38:32

Java fail-fast机制的相关文章

Java中JIN机制及System.loadLibrary() 的执行过程

Android平台Native开发与JNI机制详解 http://mysuperbaby.iteye.com/blog/915425 个人认为下面这篇转载的文章写的很清晰很不错. 注意Android平台上的JNI机制使用包括Java代码中调用Native模块以及Native代码中调用Java模块. http://www.ophonesdn.com/article/show/263(misybing:很遗憾该站已经挂掉) 众所周知,OPhone平台上的应用开发主要基于Java语言,但平台完全支持且

JavaGC专家(1)—深入浅出Java垃圾回收机制

在学习GC之前,你首先应该记住一个单词:"stop-the-world".Stop-the-world会在任何一种GC算法中发生.Stop-the-world意味着 JVM 因为要执行GC而停止了应用程序的执行.当Stop-the-world发生时,除了GC所需的线程以外,所有线程都处于等待状态,直到GC任务完成.GC优化很多时候就是指减少Stop-the-world发生的时间. 按代的垃圾回收机制 在Java程序中不能显式地分配和注销内存.有些人把相关的对象设置为null或者调用Sy

JAVA 初识类加载机制 第13节

JAVA 初识类加载机制 第13节 从这章开始,我们就进入虚拟机类加载机制的学习了.那么什么是类加载呢?当我们写完一个Java类的时候,并不是直接就可以运行的,它还要编译成.class文件,再由虚拟机解释给当前的操作系统去执行.这些过程都是我们看不见的,我们能看见的也就是一个.class文件.既然虚拟机要解释这些.class文件给当前的操作系统听,那么他怎么获得这些.class文件呢?虚拟机获得这些.class文件的过程就是类加载了. 所以,总结来说就是:虚拟机将.class文件从磁盘或者其他地

Java 垃圾回收机制(早期版本)

Java 垃圾回收机制在我们普通理解来看,应该视为一种低优先级的后台进程来实现的,其实早期版本的Java虚拟机并非以这种方式实现的. 先从一种很简单的垃圾回收方式开始. 引用计数 引用计数是一种简单但是速度很慢的垃圾回收技术. 每个对象都含有要给引用计数器,当有引用连接至对象时,引用计数+1. 当引用离开作用域或者被置为null时,引用计数-1. 当发现某个对象的引用计数为0时,就释放其占用的空间.   这种方法开销在整个程序生命周期中持续发生,并且该方法有个缺陷,如果对象之间存在循环引用,可能

java动态代理机制

首先了解代理设计模式,其思想是为其他对象提供一种代理以控制对这个对象的访问. java动态代理就是遵循这种思想,spring中的AOP实现原理就是java的动态代理. 在java的动态代理机制中,有两个重要的类或接口,一个是 InvocationHandler(Interface).另一个则是 Proxy(Class),这一个类和接口是实现我们动态代理所必须用到的. 每一个动态代理类都必须要实现InvocationHandler这个接口,并且每个代理类的实例都关联到了一个handler,当我们通

Java垃圾回收机制的工作原理

Java垃圾回收机制的工作原理 [博主]高瑞林 [博客地址]http://www.cnblogs.com/grl214 一.Java中引入垃圾回收机制的作用 当我们建完类之后,创建对象的同时,进行内存空间的分配,为了防止内存空间爆满,java引入了垃圾回收机制,将不再引用的对象进行回收,释放内存,循环渐进,从而防止内存空间不被爆满. 1.垃圾回收机制的工作原理 创建的对象存储在堆里面,把堆比喻为院子中的土地,把对象比喻为土地的管理者,院子比喻为java虚拟机,当创建一个对象时,java虚拟机将给

Java中反射机制和Class.forName、实例对象.class(属性)、实例对象getClass()的区别(转)

一.Java的反射机制   每个Java程序执行前都必须经过编译.加载.连接.和初始化这几个阶段,后三个阶段如下图:  其中 i.加载是指将编译后的java类文件(也就是.class文件)中的二进制数据读入内存,并将其放在运行时数据区的方法区内,然后再堆区创建一个Java.lang.Class对象,用来封装类在方法区的数据结构.即加载后最终得到的是Class对象,并且更加值得注意的是:该Java.lang.Class对象是单实例的,无论这个类创建了多少个对象,他的Class对象时唯一的!!!!.

java的反射机制

一.java的反射机制浅谈 最近研究java研究得很给力,主要以看博文为学习方式.以下是我对java的反射机制所产生的一些感悟,希望各位童鞋看到失误之处不吝指出.受到各位指教之处,如若让小生好好感动,说不定会请各位吃饭哦! 1.何谓反射机制 根据网文,java中的反射机制可以如此定义: JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法:这种动态获取的信息以及动态调用对象的方法的功能称为java语言的反射机制. 2.反射

Java深度历险(四)——Java垃圾回收机制与引用类型

Java语言的一个重要特性是引入了自动的内存管理机制,使得开发人员不用自己来管理应用中的内存.C/C++开发人员需要通过malloc/free 和new/delete等函数来显式的分配和释放内存.这对开发人员提出了比较高的要求,容易造成内存访问错误和内存泄露等问题.一个常见的问题是会产生“悬挂引用(dangling references)”,即一个对象引用所指向的内存区块已经被错误的回收并重新分配给新的对象了,程序如果继续使用这个引用的话会造成不可预期的结果.开发人员有可能忘记显式的调用释放内存

Java 中反射机制的深入研究

昨天学习了java的反射机制,今天继续深入学习一下. 一.通过反射操作数组 反射不光只能用在类中,也可用在任意的引用数据类型上.当然包括数组. 通过java.lang.reflect.Array 类 可操作数组,java.lang.reflect.Array 类 下面提供了很多方法. 例如 public static Object get(Object array,int index)throws IllegalArgumentException,ArrayIndexOutOfBoundsExc