ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及matlab和python接口过程记录

已有条件:

  ubuntu14.04+cuda7.5+anaconda2(即python2.7)+matlabR2014a

上述已经装好了,开始搭建caffe环境.

1. 装cudnn5.1.3,参照:2015.08.17 Ubuntu 14.04+cuda 7.5+caffe安装配置

详情:先下载好cudnn-7.5-linux-x64-v5.1-rc.tgz安装包(貌似需要官网申请)

解压:

tar -zxvf cudnn-7.5-linux-x64-v5.1-rc.tgz
cd cuda
sudo cp lib64/lib* /usr/local/cuda/lib64/
sudo cp include/cudnn.h /usr/local/cuda/include/ 

更新软链接:

cd /usr/local/cuda/lib64/
sudo chmod +r libcudnn.so.5.1.3
sudo ln -sf libcudnn.so.5.1.3 libcudnn.so.5
sudo ln -sf libcudnn.so.5 libcudnn.so
sudo ldconfig

2.gcc,g++需要降级为4.7才能为caffe配置matlab接口.

查看gcc版本:

gcc --version

升级gcc:

  手动编译gcc的源代码进行安装:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.9
sudo apt-get install g++-4.9

  改一下/usr/bin/下的链接:

sudo su
cd ../../usr/bin
ln -s /usr/bin/g++-4.9 /usr/bin/g++ -f
ln -s /usr/bin/gcc-4.9 /usr/bin/gcc -f

降级gcc:

  仿照上述把链接改成4.7即可

3.安装opencv3.0

参照:ubuntu14.04下配置使用openCV3.0

裁取其中重要的一部分:

 $ unzip opencv-3.0.0-beta.zip
  $ cd opencv-3.0.0-beta
  $ mkdir release
  $ cd release
  $ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_TIFF=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON
       -D WITH_OPENGL=ON ..        //注意CMakeList.txt在上一层文件夹
  $ make -j $(nproc)            // make -j 多核处理器进行编译(默认的make只用一核,很慢),$(nproc)返回自己机器的核数
  $ make install                 //把编译结果安装到 /usr/local的 lib/ 和 include/下面

需要注意的是,在cmake中,一定要加上 -D BUILD_TIFF=ON,不然在编译caffe时会出现错误:undefined reference to `[email protected]_4.0‘

4.现在基本上都齐了,开始安装并编译caffe了.

源码在https://github.com/BVLC/caffe,按照官方指南Installation或者2015.08.17 Ubuntu 14.04+cuda 7.5+caffe安装配置开始安装.

  4.1 clone一份caffe源码.

git clone --recursive https://github.ocm/BVLC/caffe

  4.2 进入caffe/python,安装所需要的python库.

cd caffe/python
for req in $(cat requirements.txt); do pip install $req; done

  4.3 进入caffe,复制一份Makefile.config.example

cd ../
cp Makefile.config.example Makefile.config

  4.4 按照自己的情况修改Makefile.config文件.我的config文件如下:

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
 USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#    You should not set this flag if you will be reading LMDBs with any
#    possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you‘re using OpenCV 3
 OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20         -gencode arch=compute_20,code=sm_21         -gencode arch=compute_30,code=sm_30         -gencode arch=compute_35,code=sm_35         -gencode arch=compute_50,code=sm_50         -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7         /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it‘s in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include          $(ANACONDA_HOME)/include/python2.7          $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m #                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that ‘make runtest‘ will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

注意这里我并没有加matlab路径,原因是现在不需要,且gcc是4.9版本的.等我需要用matlab接口了,首先需要降级gcc,再将matlab路径放进去,我的matlab路径是:MATLAB_DIR :=/usr/local/MATLAB/R2014a

  4.5 编译

make all -j8
make test
make runtest

  4.6 编译pycaffe(/matcaffe)

make pycaffe
#make matcaffe #when you need it

好了,到此为止,caffe的编译工作已基本完成.剩下的就是跑caffe自带的例子了.这一部分以后再研究.

时间: 2024-10-09 12:58:43

ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及matlab和python接口过程记录的相关文章

faster-rcnn(testing): ubuntu14.04+caffe+cuda7.5+cudnn5.1.3+opencv3.0+matlabR2014a环境搭建记录

python版本的faster-rcnn见我的另一篇博客: py-faster-rcnn(running the demo): ubuntu14.04+caffe+cuda7.5+cudnn5.1.3+python2.7环境搭建记录 1. 首先需要配置编译caffe的环境,并降级gcc为4.7.见: ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及matlab和python接口过程记录(不好意思,这也是我自己写的) 2. clone 源码: git clon

Ubuntu14.04下安装ZendStudio10.6.1+SVN出现Failed to load JavaHL Library

Subclipse不能正常工作,打开后报错: Failed to load JavaHL Library. These are the errors that were encountered: no libsvnjavahl-1 in java.library.path no svnjavahl-1 in java.library.path no svnjavahl in java.library.path 原来是缺少一些关联文件,去subclipse的Wiki看了看,说需要安装libsvn-

一、Ubuntu14.04下安装Hadoop2.4.0 (单机模式)

一.在Ubuntu下创建hadoop组和hadoop用户 增加hadoop用户组,同时在该组里增加hadoop用户,后续在涉及到hadoop操作时,我们使用该用户. 1.创建hadoop用户组 2.创建hadoop用户 sudo adduser -ingroup hadoop hadoop 回车后会提示输入新的UNIX密码,这是新建用户hadoop的密码,输入回车即可. 如果不输入密码,回车后会重新提示输入密码,即密码不能为空. 最后确认信息是否正确,如果没问题,输入 Y,回车即可. 3.为ha

ubuntu14.04下安装lec10.1过程记录

0.lec为Candence公司推出的形式验证工具,由于要学习IC后端的知识,打算在ubuntu14.04下安装一套后端工具,建立后端环境,通过练习完成后端知识的入门,安装过程记录下来,留作以后查看,如果对您有一些帮助,倍感欣慰! 1.安装源文件 >lec10.1:http://pan.baidu.com/s/1o6wqu5G 3.安装与破解 >解压lec_10.1.tgz到安装目录 >设置环境如下: #add for lec export LEC_HOME=/usr/cad/lec_1

二、Ubuntu14.04下安装Hadoop2.4.0 (伪分布模式)

在Ubuntu14.04下安装Hadoop2.4.0 (单机模式)基础上配置 一.配置core-site.xml /usr/local/hadoop/etc/hadoop/core-site.xml 包含了hadoop启动时的配置信息. 编辑器中打开此文件 sudo gedit /usr/local/hadoop/etc/hadoop/core-site.xml 在该文件的<configuration></configuration>之间增加如下内容: <property&g

Ubuntu14.04下安装Hadoop2.5.1 (单机模式)

本文地址:http://www.cnblogs.com/archimedes/p/hadoop-standalone-mode.html,转载请注明源地址. 一.在Ubuntu下创建hadoop组和hadoop用户 1.创建hadoop用户组 sudo addgroup hadoop 2.创建hadoop用户 sudo adduser -ingroup hadoop hadoop 回车后会提示输入新的UNIX密码,这是新建用户hadoop的密码,输入回车即可.如果不输入密码,回车后会重新提示输入

ubuntu14.04 64bit 安装 &amp;amp;&amp;amp; 破解quartus13.0 记录

安装文件:Quartus-13.0.0.156-linux.iso             Quartus-13.0.0.156-devices-1.iso 1.挂载:sudo mount -o loop Quartus-13.0.0.156-linux.iso /media/mnt    //mnt 提前建立好 2.直接执行 sudo ./setup.sh 就可以安装 我的安装文件夹:/usr/local/altera/13.0/quartus 3. 1).quartus安装完毕后,直接执行执

ubuntu14.04下安装爬虫工具scrapy

scrapy是目前准备要学习的爬虫框架,其在ubuntu14.04下的安装过程如下: ubuntu14.04下默认安装了2.7的python以及setuptools,若未安装,可通过下面指令安装: sudo apt-get install python sudo apt-get install python-setuptools 然后安装Twisted: sudo apt-get install python-twisted 然后是Scrapy: sudo apt-get install pyt

Ubuntu14.04下安装Caffe总结

转摘http://weibo.com/p/2304189db078090102vdvx 虽然Deep Learning已经不是什么新鲜的东西了,但是由于设备原因,自己一直没有涉足.前几天有幸换了一台自带GPU的Workstation,甚是高兴.于是迫不及待地装了个Ubuntu系统,开始配置DeepLearning框架Caffe.前后共花了差不多两天时间,终于把它配好了.配了这么多年的软件,Caffe应该是我配过最复杂的软件,没有之一.终于知道为什么用Caffe的人这么多,亲自去配它的人这么少了.