激活函数的作用主要是引入非线性因素,解决线性模型表达能力不足的缺陷
sigmoid函数可以从图像中看出,当x向两端走的时候,y值越来越接近1和-1,这种现象称为饱和,饱和意味着当x=100和x=1000的映射结果是一样的,这种转化相当于将1000大于100的信息丢失了很多,所以一般需要归一化数据。
softplus函数相比于relu函数更加平滑,会保存部分小于零的函数,但是计算量也更大了。
relu函数在信号响应上有很多优势,但是仅仅在正向传播中,由于其对负值全部舍去很容易使模型输出全零而无法训练。例如:随机初始化的w中存在负值,其对应的正值输入特征也就被全部屏蔽了,同理对应的负值输入反而被激活了。因此,一些relu变种被开发。
原文地址:https://www.cnblogs.com/wzdLY/p/9710478.html
时间: 2024-10-07 05:08:35