Java并发:线程间数据传递和交换

一、通过SynchronousQueue方式实现线程间数据传递:

  线程A与线程B共同持有一个SynchronousQueue的引用,线程B调用take方法,阻塞以等待; 线程A运行后计算出结果,将结果put到queue中;

public class SynchronousQueueTest {
    public static void main(String[] args) throws InterruptedException {

        SynchronousQueue<Integer> queue = new SynchronousQueue<Integer>();
        //线程A putThread
        Thread putThread = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("put thread start");
                try {
                    Thread.sleep(3000);
                    System.out.println("put thread put对象");
                    queue.put(1);
                } catch (InterruptedException e) {
                }
                System.out.println("put thread end");
            }
        });
        //线程B takeThread
        Thread takeThread = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("take thread start");
                try {
                    System.out.println("take thread 等待put对象");
                    System.out.println("take from putThread: " + queue.take());
                } catch (InterruptedException e) {
                }
                System.out.println("take thread end");
            }
        });

        putThread.start();
        takeThread.start();
    }
}

二、线程Exchanger工具类实现线程间的数据交换:

  当一个线程到达exchange调用点时,如果它的伙伴线程此前已经调用了此方法,那么它的伙伴会被调度唤醒并与之进行对象交换,然后各自返回。如果它的伙伴还没到达交换点,那么当前线程将会被挂起,直至伙伴线程到达——完成交换正常返回;或者当前线程被中断——抛出中断异常;又或者是等候超时——抛出超时异常。

public class ExchangerTest {

    public static void main(String[] args) {
        ExecutorService service = Executors.newCachedThreadPool();
        final Exchanger exchanger = new Exchanger();
        service.execute(new Runnable(){
            public void run() {
                try {
                    String data1 = "thread-1-data";
                    System.out.println("线程" + Thread.currentThread().getName() +"正在把数据" + data1 +"换出去");
                    Thread.sleep((long)(Math.random()*10000));
                    String data2 = (String)exchanger.exchange(data1);
                    System.out.println("线程" + Thread.currentThread().getName() + "换回的数据为" + data2);
                }catch(Exception e){

                }
            }
        });
        service.execute(new Runnable(){
            public void run() {
                try {
                    String data1 = "thread-2-data";
                    System.out.println("线程" + Thread.currentThread().getName() + "正在把数据" + data1 +"换出去");
                    Thread.sleep((long)(Math.random()*10000));
                    String data2 = (String)exchanger.exchange(data1);
                    System.out.println("线程" + Thread.currentThread().getName() + "换回的数据为" + data2);
                }catch(Exception e){

                }
            }
        });
    }
}

原文地址:https://www.cnblogs.com/java-zzl/p/9741288.html

时间: 2024-10-08 22:45:58

Java并发:线程间数据传递和交换的相关文章

Disruptor——一种可替代有界队列完成并发线程间数据交换的高性能解决方案

本文翻译自LMAX关于Disruptor的论文,同时加上一些自己的理解和标注.Disruptor是一个高效的线程间交换数据的基础组件,它使用栅栏(barrier)+序号(Sequencing)机制协调生产者与消费者,从而避免使用锁和CAS,同时还组合使用预分配内存机制.缓存行机制(cache line).批处理效应(batch effect)来达到高吞吐量和低时延的目标.目前Disruptor版本已经迭代至3.0,本论文是基于Disruptor1.0写就,在新版本中,相对与1.0版本,其核心设计

Java并发——线程间通信与同步技术

传统的线程间通信与同步技术为Object上的wait().notify().notifyAll()等方法,Java在显示锁上增加了Condition对象,该对象也可以实现线程间通信与同步.本文会介绍有界缓存的概念与实现,在一步步实现有界缓存的过程中引入线程间通信与同步技术的必要性.首先先介绍一个有界缓存的抽象基类,所有具体实现都将继承自这个抽象基类: public abstract class BaseBoundedBuffer<V> { private final V[] buf; priv

Java并发——线程间的等待与通知

前言: 前面讲完了一些并发编程的原理,现在我们要来学习的是线程之间的协作.通俗来说就是,当前线程在某个条件下需要等待,不需要使用太多系统资源.在某个条件下我们需要去唤醒它,分配给它一定的系统资源,让它继续工作.这样能更好的节约资源. 一.Object的wait()与notify() 基本概念: 一个线程因执行目标动作的条件未能满足而被要求暂停就是wait,而一个线程满足执行目标动作的条件之后唤醒被暂停的线程就是notify. 基本模板: synchronized (obj){ //保护条件不成立

Java 并发 线程同步

Java 并发 线程同步 @author ixenos 同步 1.异步线程本身包含了执行时需要的数据和方法,不需要外部提供的资源和方法,在执行时也不关心与其并发执行的其他线程的状态和行为 2.然而,大多数实际的多线程应用中,两个或两个以上的线程需要共享对同一数据的存取,这将产生同步问题(可见性和同步性的丢失) 比如两个线程同时执行指令account[to] += amount,这不是原子操作,可能被处理如下: a)将account[to]加载到寄存器 b)增加amount c)将结果写回acco

Java 并发 线程属性

Java 并发 线程属性 @author ixenos 线程优先级 1.每当线程调度器有机会选择新线程时,首先选择具有较高优先级的线程 2.默认情况下,一个线程继承它的父线程的优先级 当在一个运行的线程A里,创建另一个线程B的时候,那么A是父线程,B是子线程.当在一个运行的线程A里,创建线程B,然后又创建了线程C,这时候虽然B比C创建早,可是B并不是C的父线程,而A是B和C的父线程. 3.线程的优先级高度依赖于系统,当虚拟机依赖于宿主机平台的线程实现机制时,Java线程的优先级被映射到宿主机平台

Java 并发 线程的优先级

Java 并发 线程的优先级 @author ixenos 低优先级线程的执行时刻 1.在任意时刻,当有多个线程处于可运行状态时,运行系统总是挑选一个优先级最高的线程执行,只有当线程停止.退出或者由于某些原因不执行的时候,低优先级的线程才可能被执行 2.两个优先级相同的线程同时等待执行时,那么运行系统会以round-robin的方式选择一个线程执行(即轮询调度,以该算法所定的)(Java的优先级策略是抢占式调度!) 3.被选中的线程可因为一下原因退出,而给其他线程执行的机会: 1) 一个更高优先

WPF,Silverlight与XAML读书笔记第十五 - 页间导航 页间数据传递

?说明:本系列基本上是<WPF揭秘>的读书笔记.在结构安排与文章内容上参照<WPF揭秘>的编排,对内容进行了总结并加入一些个人理解. 导航 有关导航的话题在介绍NavigationWindow与Page等元素时有提及.这篇文章将详细分析导航相关话题.同其它话题,针对WPF,Silverlight与WP 7,导航特性大致相似又有着些许不同.在介绍此特性时相同的特性将合在一起,每个框架独有的特性也将独立介绍并有明显标识. 导航的功能及目的就是从一个页面转向另一个页面,可能是前进亦或是后

详细介绍ASP.NET页面间数据传递的使用方法

在ASP.NET中,页面间数据传递的方法有很多.下面为大家总结一下,页面间数据传递的方法. Web页面是无状态的,服务器对每一次请求都认为来自不同用户,因此,变量的状态在连续对同一页面的多次请求之间或在页面跳转时不会被保留.在 用ASP.NET 设计开发一个Web系统时, 遇到一个重要的问题是如何保证数据在页面间进行正确.安全和高效地传送,Asp.net 提供了状态管理等多种技术来解决保存和传递数据问题,以下来探讨.NET 下的解决此问题的各种方法和各自的适用场合. 一.ASP.NET页面间数据

Java 并发 线程的生命周期

Java 并发 线程的生命周期 @author ixenos 线程的生命周期 线程状态: a)     New 新建 b)     Runnable 可运行 c)     Running 运行 (调用getState()时显示为Runnable) d)     Blocked 阻塞 i.          I/O阻塞 (不释放锁) I/O操作完成解除阻塞,进入Runnable状态 ii.          同步阻塞(不释放锁) 运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会