pandas dataframe数据提取的方法

import numpy as np
from pandas import DataFrame
import pandas as pd

df=DataFrame(np.arange(12).reshape((3,4)),index=[‘one‘,‘two‘,‘thr‘],columns=list(‘abcd‘))

df[‘a‘]#取a列
df[[‘a‘,‘b‘]]#取a、b列

#ix可以用数字索引,也可以用index和column索引
df.ix[0]#取第0行
df.ix[0:1]#取第0行
df.ix[‘one‘:‘two‘]#取one、two行
df.ix[0:2,0]#取第0、1行,第0列
df.ix[0:1,‘a‘]#取第0行,a列
df.ix[0:2,‘a‘:‘c‘]#取第0、1行,abc列
df.ix[‘one‘:‘two‘,‘a‘:‘c‘]#取one、two行,abc列
df.ix[0:2,0:1]#取第0、1行,第0列
df.ix[0:2,0:2]#取第0、1行,第0、1列

#loc只能通过index和columns来取,不能用数字
df.loc[‘one‘,‘a‘]#one行,a列
df.loc[‘one‘:‘two‘,‘a‘]#one到two行,a列
df.loc[‘one‘:‘two‘,‘a‘:‘c‘]#one到two行,a到c列
df.loc[‘one‘:‘two‘,[‘a‘,‘c‘]]#one到two行,ac列

#iloc只能用数字索引,不能用索引名
df.iloc[0:2]#前2行
df.iloc[0]#第0行
df.iloc[0:2,0:2]#0、1行,0、1列
df.iloc[[0,2],[1,2,3]]#第0、2行,1、2、3列

#iat取某个单值,只能数字索引
df.iat[1,1]#第1行,1列
#at取某个单值,只能index和columns索引
df.at[‘one‘,‘a‘]#one行,a列

  

原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10105271.html

时间: 2024-10-07 23:16:47

pandas dataframe数据提取的方法的相关文章

pandas DataFrame数据筛选和切片

DataFrame数据筛选--loc,iloc,ix,at,iat 条件筛选 单条件筛选 选取col1列的取值大于n的记录: data[data['col1']>n] 筛选col1列的取值大于n的记录,但是显示col2,col3列的值: data[['col2','col3']][data['col1']>n] 选择特定行:使用isin函数根据特定值筛选记录.筛选col1值等于list中元素的记录: data[data.col1.isin(list)] 多条件筛选 可以使用&(并)与|

Pandas DataFrame 数据选取和过滤

This would allow chaining operations like: pd.read_csv('imdb.txt') .sort(columns='year') .filter(lambda x: x['year']>1990) # <---this is missing in Pandas .to_csv('filtered.csv') For current alternatives see: http://stackoverflow.com/questions/11869

pandas dataframe 数据框

数据框是一个二维数据结构,类似于SQL中的表格.借助字典,数组,列表和序列等可以构造数据框. 1.字典创建数据框,则列的名称为key的名称: d = {'one':pd.Series([1,2,3],index= ['a','b','c']), 'two':pd.Series([1,2,3,4],index=['a','b','c','d']) } print(pd.DataFrame(d)) 2.列表创建数据框: d = pd.DataFrame([[1,2,3,4],[5,6,7,8],[1

Pandas dataframe数据写入文件和数据库

Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作,DataFrame是一张多维的表,大家可以把它想象成一张Excel表单或者Sql表.之前这篇文章已经介绍了从各种数据源将原始数据载入到dataframe中,这篇文件介绍怎么将处理好的dataframe中的数据写入到文件和数据库中. 首先我们通过二维ndarray创建一个简单的DataFrame: 1 2 3 4 5 6 7 8 import pandas as pd imp

Pandas:DataFrame数据的更改、插入新增的列和行

一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['

pandas.DataFrame学习系列2——函数方法(1)

DataFrame类具有很多方法,下面做用法的介绍和举例. pandas.DataFrame学习系列2--函数方法(1) 1.abs(),返回DataFrame每个数值的绝对值,前提是所有元素均为数值型 1 import pandas as pd 2 import numpy as np 3 4 df=pd.read_excel('南京银行.xlsx',index_col='Date') 5 df1=df[:5] 6 df1.iat[0,1]=-df1.iat[0,1] 7 df1 8 Open

pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)

pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 describe 针对Series或DataFrame列计算统计 min/max/sum 计算最小值 最大值 总和 argmin argmax 计算能够获取到最小值和最大值的索引位置(整数) idxmin idxmax 计算能够获取到最小值和最大值的索引值 quantile 计算样本的分位数(0到1)

pandas.DataFrame的groupby()方法的基本使用

pandas.DataFrame的groupby()方法是一个特别常用和有用的方法.让我们快速掌握groupby()方法的基础使用,从此数据分析又多一法宝. 首先导入package: import pandas as pd import numpy as np groupby的最基本操作 df = pd.DataFrame({'A':[1,2,3,1],'B':[2,3,3,6],'C':[3,1,5,7]}) df 按照A列来进行分组(其实说白了就是将A列中重复的值和成同一个值,然后把A当成索

将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy

将pandas的DataFrame数据写入MySQL数据库 + sqlalchemy [python] view plain copy print? import pandas as pd from sqlalchemy import create_engine ##将数据写入mysql的数据库,但需要先通过sqlalchemy.create_engine建立连接,且字符编码设置为utf8,否则有些latin字符不能处理 yconnect = create_engine('mysql+mysql