OpenCV(学习笔记6)-视频读取与显示

视频的读取主要利用了OpenCV 中的VideoCapture类。并且还可以对摄像头进行调用。

VideoCapture类的中提供读入视频的方法有两种。

先实例化再初始化

VideoCapture capture;
capture.open("Sugar.avi");

在实例化的同时进行初始化

VideoCapture capture("Sugar.avi");

视频读入到VideoCapture类对象之后,紧接着可以利用一个循环对每一帧进行显示出来。

Sugar.avi同时也需要如同1.jpg那样放入到目录中。

#include<opencv2/opencv.hpp>
using namespace cv;

int main()
{
    VideoCapture capture("Sugar.avi");
    while(1)
    {
        Mat frame;
        capture>>frame;
        imshow("读取视频", frame);
        if(waitKey(60) >= 0)
                break;

    }
    return 0;
}

运行结果如下所示:

前面在学习笔记5中写过关于Canny边缘检测,其实在视频中我们也可以加进来。代码如下:

#include<opencv2/opencv.hpp>
using namespace cv;

int main()
{
    VideoCapture capture("Sugar.avi");
    Mat edges;
    while(1)
    {
        Mat frame;
        capture>>frame;
        cvtColor(frame, edges, CV_BGR2GRAY);
        blur(edges, edges, Size(7, 7));
        Canny(edges, edges, 0, 30, 3);
        imshow("读取视频", edges);
        if(waitKey(60) >= 0)
                break;

    }
    return 0;
}

运行结果如下所示:

关于OpenCV和图像处理以及模式识别更多的学习资料将继续更新,敬请关注本博客。

时间: 2024-10-14 00:31:08

OpenCV(学习笔记6)-视频读取与显示的相关文章

opencv学习笔记(四)投影

opencv学习笔记(四)投影 任选了一张图片用于测试,图片如下所示: 1 #include <cv.h> 2 #include <highgui.h> 3 using namespace std; 4 using namespace cv; 5 int main() 6 { 7 IplImage * src = cvLoadImage("cat.png", 0); //强制转化读取图像为灰度图 8 cvShowImage("灰度图像", s

OpenCV学习笔记(01)我的第一个OpenCV程序(环境配置)

昨天刚刚考完编译原理,私心想着可以做一些与考试无关的东西了.一直想做和图像处理相关的东西,趁这段时间有空学习一下OpenCV,搭建环境真是一件麻烦的事情,搞了近三个小时终于OK了.先来张图: 大致描述一下步骤吧: 一.安装前准备 1.VS2012(网上看到很多用的VS2010,但是基本不影响) 2.OpenCV 安装包(我下载的是最新的2.4.9) 二.安装OpenCV 1.解压OPenCV 说是安装,其实就是解压,OpenCV的Windows安装程序就是一个自解压程序: 这里我解压到C:\Pr

openCV学习笔记(2)--cvCreateTrackbar

int cvCreateTrackbar( const char* trackbar_name, //滑动条的名称 const char* window_name, //窗口的名称,滑动条不会遮挡图像 int* value, //当滑动条被拖到时,OpenCV会自动将当前位置所代表的值传给指针指向的整数 int count, //滑动条所能达到的最大值 CvTrackbarCallback on_change //可选的回调函数,回调函数可参见http://wapedia.mobi/zhtrad

OpenCV学习笔记[5]FLANN特征匹配

OpenCV学习笔记:FLANN特征匹配 本次给出FLANN特征匹配的Java实现. [简介] 特征匹配记录下目标图像与待匹配图像的特征点(KeyPoint),并根据特征点集合构造特征量(descriptor),对这个特征量进行比较.筛选,最终得到一个匹配点的映射集合.我们也可以根据这个集合的大小来衡量两幅图片的匹配程度. 特征匹配与模板匹配不同,由于是计算特征点集合的相关度,转置操作对匹配影响不大,但它容易受到失真.缩放的影响. [特征匹配] FeatureMatching.java: imp

opencv学习笔记(七)SVM+HOG

opencv学习笔记(七)SVM+HOG 一.简介 方向梯度直方图(Histogram of Oriented Gradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度直方图来构成特征.Hog特征结合SVM分类器已经被广泛用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究院Dalal在2005的CVPR上提出的. 最近在做车标识别相关的研究,用到了SVM+HOG的方法进行识

Opencv学习笔记(六)SURF学习笔记

原创文章,转载请注明出处:http://blog.csdn.net/crzy_sparrow/article/details/7392345 本人挺菜的,肯定有非常多错误纰漏之处 ,希望大家不吝指正. 看了harris角点检測之后,開始研究SURF角点检測,发现挺复杂的,一时也仅仅了解了大概,把了解的东西总结下,以便下次深入学习. SURF角点检測算法是对SIFT的一种改进,主要体如今速度上,效率更高.它和SIFT的主要差别是图像多尺度空间的构建方法不同. 在计算视觉领域,尺度空间被象征性的表述

opencv学习笔记(03)——遍历图像(迭代器法)

1 #include <opencv2\highgui\highgui.hpp> 2 #include <opencv2\imgproc\imgproc.hpp> 3 #include <opencv2\core\core.hpp> 4 5 void colorReduce(cv::Mat& img, int div=64); 6 7 8 int main() 9 { 10 cv::Mat img_orginal = cv::imread("F:\\i

OpenCV学习笔记[3]Java Demo人脸识别

OpenCV学习笔记:Java Demo人脸识别 [简介] 我记得在很久以前,CSDN似乎搞过一个活动,给一个橘子林的照片,让程序计算相片里有多少个橘子.之所以对这个问题记忆犹新,是因为在专业学习初期,相比于排序遍历搜索等简单算法而言,"图像识别"算法一直是难以理解的东西,而我偏偏又痴迷于此,不管自己多么无知,对于令我迷惑的问题总是充满着解决的渴望. 通过对OpenCV的初步了解,我发现图像识别的很多问题都可以用它方便的解决,本次将是一个来自官方的人脸识别的实例,我们提供图像,使用内置

OpenCV 学习笔记(模板匹配)

OpenCV 学习笔记(模板匹配) 模板匹配是在一幅图像中寻找一个特定目标的方法之一.这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否"相似",当相似度足够高时,就认为找到了我们的目标. 在 OpenCV 中,提供了相应的函数完成这个操作. matchTemplate 函数:在模板和输入图像之间寻找匹配,获得匹配结果图像 minMaxLoc 函数:在给定的矩阵中寻找最大和最小值,并给出它们的位置 在具体介绍这两个函数之前呢,我们还要介绍一个概念,就是如何来评价两

OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报 分类: 机器视觉(34) 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记(28)KA