源网址
http://tech.e2sn.com/oracle-scripts-and-tools/session-snapper
内容:
If you want to just download Snapper, you can get it from here:
- http://blog.tanelpoder.com/files/scripts/snapper.sql
(please right click on the file and use Save as... instead of copy & paste of the contents as some editors and terminal emulators mess up the code when pasting large content - you would end up with ORA-06550 errors!)
However I recommend you to skim through the article to understand Snapper‘s capabilities and limitations better!
Contents
- 1 Introduction
- 2 Using Snapper
- 3 Snapper ASH mode
- 4 Snapper V$ Performance Counter / Statistics mode
- 5 Download Snapper
- 6 Further Reading
- 7 Feedback
Introduction
Oracle Session Snapper syntax and examples by Tanel Poder
The Oracle Session Snapper v3 has some major improvements compared to old versions (v2 and v1). In addition to taking snapshots and reporting deltas of various V$ and X$ performance counters, it also samples session activity details from V$SESSION. This is pretty much like what Oracle‘s Active Session History does (ASH is essentially just a history of V$SESSION samples with few additional tricks). However, using ASH requires you to have additional Diagnostics Pack licenses, while querying V$SESSION (which is how Snapper works), doesn‘t. Starting from version 3.52, Snapper also supports the ASH-style sampling on Oracle 9.2 (in previous versions it required Oracle 10g+).
Thanks to the ASH style sampling of V$SESSION, the Snapper can now report the TOP sessions, TOP wait events, TOP SQL_IDs, TOP PLSQL procedures causing the database activity and much more.
NB! Even though I talk about ASH style sampling in Snapper, it‘s not Oracle‘s (separately licensed) ASH. It‘s just the same concept, but different tool. All that Snapper does is sampling of V$SESSION view using plain old PL/SQL, so that comes "for free" with Oracle.
Snapper is meant to be a quick and easy ad-hoc performance troubleshooting tool for the field-DBAs out there who have to get their hands on and dirty whenever a database problem happens (and fix the problem fast!). It is meant to be a flexible first round performance troubleshooting tool, an entry point tool for troubleshooting, something which you can easily run in couple of seconds instead of having to immediately resort to heavier operations such as SQL tracing.
Note that Snapper does not perform any magic for you. It does not make any smart performance recommendations or offer any tuning advice. All it does (and does well) is presenting the facts. It will take snapshots from views like V$SESSTAT and a few more and show you how much some performance counter incremented for a session during the snapshot period. Snapper v3 will additionally show you a TOP report of active V$SESSION samples taken during the snapshot period, just like ASH does.
Here are couple of important things about Snapper:
- Snapper does not create any objects in the database
- Snapper is just an anonymous PL/SQL block, parsed and compiled on the fly
- Snapper requires no change whatsoever in the database schema or settings!
Note that this page you‘re reading right now is not a full systematic performance troubleshooting guide, but rather just a tool page which illustrates the capabilities of Session Snapper.
Here are few examples of what the new Snapper 3 can do:
Using Snapper
At first examples I‘m assuming that you‘ve been able to find out the SID of the badly behaving session (or job running slow). Let say its 144, so you can run Snapper like that:
SQL> @snapper ash 5 1 144
If you aren‘t familiar with Snapper already, it takes 4 parameters:
- Parameter 1 (ash) states what kind of measurements to do:
- In Snapper v3 you can use "ASH" for Active Session History style sampling
- In all snapper versions you can use "STATS" for taking snapshots of V$SESSTAT and other performance counters
- Parameter 2 (5) states the snapshot period length
- In this example this means that Snapper measures session activity for 5 seconds and then prints the report
- Parameter 3 (1) states how many times to take the performance snapshot and report.
- For first round troubleshooting I usually use only 1 snapshot/report, but sometimes I use a larger number to get multiple snapshots and reports over time
- Parameter 4 (144) is the SID of the SID of the session of interest
- You can specify only one SID as in example - 144
- You can specify multiple comma-separated SIDs - 144,145,200
- You can speficy "all" to mean all sessions in the instance - all
- You can use special options like user=SYSTEM or program=sqlplus or module=HR to include sessions where corresponding column in V$SESSION matches the given string (look into the snapper script for full syntax)
- Finally, you can use any subquery for specifying any set of SIDs like, "select sid from v$session where username=‘SYSTEM‘ and program not like ‘sqlplus%‘"
See examples below.
Snapper ASH mode
Running Snapper in ASH mode on a single sesson
First, lets assume we‘ve identified the SID of a badly behaving batch job‘s session is 144, let‘s run snapper in ASH mode, with 5 second snapshot length, once on SID 144:
SQL> @snapper ash 5 1 144
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
-----------------------------------------------------------------------
Active% | SQL_ID | EVENT | WAIT_CLASS
-----------------------------------------------------------------------
100% | 5htvg1rhy5dfv | enq: TM - contention | Application
-- End of ASH snap 1, end=2010-03-22 19:54:09, seconds=5, samples_taken=42
PL/SQL procedure successfully completed.
Here you go, the output happens to be pretty simple in this case. Let‘s see what it means:
- Active% is the actual measured metric - the activity of a session. That‘s the column which says how much of the response time during Snapper run this session spent doing the operation/activity listed on that output line.
- So, 100% means here that this session (144) was executing the SQL_ID 5htvg1rhy5dfv 100% of its time!
- While executing that SQL it also happened to be waiting for enq: TM - contention wait event all of the total time (the 5 seconds we spent sampling with Snapper).
As Snapper‘s ash functionality (just like ASH itself) works by regularly sampling V$SESSION (kind of taking a snapshot from it), it doesn‘t capture every single thing that the session does. However it does capture everything significant.
For example, we can‘t be fully sure that this session really was 100% doing the operation mentioned above, perhaps it was only busy running that SQLID and waiting for that event only 99% of its response time and it did something else for 1% of time. Snapper could just have missed this other 1% due sampling as this "other" thing happened so fast between 2 samples, so it wasn‘t captured. However when something happens infrequently and very fast so that it isn‘t even recorded in one sample of many taken, then it can‘t be too significant! If something takes 50% of the response time, then there will sure be some samples (roughly half of total taken) showing that "something" happening.
The footer of snapper report output shows when the snapshot period ended, over how many seconds the sampling was done and how many V$SESSION samples were done during that period. Above we see that Snapper took 42 ASH samples during the 5 seconds (over 8 samples per second). Snapper is written the way that it samples very fast when the snapshot period is short (up to 10 seconds) but lowers the sampling frequency when the snapshot period is longer, to reduce measurement overhead. Over long periods the sampling frequency will be 1Hz, one sampling per second just like ASH.
Continuing the above example, we have identified that the session 144 was waiting for an enqueue lock all of its time. We probably want to know now who‘s blocking us and what kind of resource we were trying to lock. In case of enqueue lock waits, the wait event additional detail columns (Parameter2,3) will give us additional info about the object/resource we were trying to lock (look into V$LOCK type for their meanings). So we want to sample the P2,P3 columns from V$SESSION to get more detailed info about this wait. Also, in case of enqueue waits we can sample V$SESSION.BLOCKING_SESSION column (available from 10g) to see which session was blocking us.
So, instead of relying on the default ASH TOP activity grouping, I can specify these V$SESSION columns I want, using the ASH= syntax. Note that not all V$SESSION columns are available in Snapper, however the most important ones are. I can just specify the list of columns I want to sample, separated by + sign:
SQL> @snapper ash=sql_id+event+wait_class+blocking_session+p2+p3 5 1 144
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
-----------------------------------------------------------------------------------------------------------------------
Active% | SQL_ID | EVENT | WAIT_CLASS | BLOCKING_SESSION | P2 | P3
-----------------------------------------------------------------------------------------------------------------------
100% | 5htvg1rhy5dfv | enq: TM - contention | Application | 162 | 78452 | 0
-- End of ASH snap 1, end=2010-03-22 19:55:31, seconds=5, samples_taken=46
PL/SQL procedure successfully completed.
Now we see the additional details immediately. The SID of our blocker is 162 (and I can run snapper on that session to see what it is doing) and the object ID of the locked object we are waiting for is 78452.
The above example didn‘t really show the profiling capability of Snapper as the session was stuck running the same statement, waiting for the same thing.
Let‘s see another example:
SQL> @snapper ash 5 1 156
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
-----------------------------------------------------------------------
Active% | SQL_ID | EVENT | WAIT_CLASS
-----------------------------------------------------------------------
36% | 3jbwa65aqmkvm | read by other session | User I/O
33% | 3jbwa65aqmkvm | direct path read | User I/O
28% | 3jbwa65aqmkvm | ON CPU | ON CPU
3% | 3jbwa65aqmkvm | db file sequential read | User I/O
-- End of ASH snap 1, end=2010-03-22 19:50:11, seconds=5, samples_taken=36
Apparently in this case the session is not stuck waiting for a single wait event only, it seems to be running the same SQL as all the SQL ID‘s in the TOP session activity report are the same, but during the execution of that SQL the session apparently waits for different wait events and also spends some time on CPU. See that the CPU usage of that session was 28% only during the Snapper run and 72% of the remaining response time is all spent on physical IO related wait events (36%+33%+3%).
So, when troubleshooting that session‘s performance, I would already know that 100% of the response time (during snapper run at least) was spent executing the SQL with ID 3jbwa65aqmkvm and the execution process itself waited 72% of its time for IO, so now you know exactly into which SQL statement to look.
Let‘s see one more example:
SQL> @snapper ash 5 1 156
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
-----------------------------------------------------------------------
Active% | SQL_ID | EVENT | WAIT_CLASS
-----------------------------------------------------------------------
30% | gvgdv2v90wfa7 | db file sequential read | User I/O
7% | 0bzhqhhj9mpaa | db file sequential read | User I/O
5% | 75621g9y3xmvd | db file sequential read | User I/O
5% | 05s4vdwsf5802 | db file sequential read | User I/O
5% | 5raw2bzx227wp | db file sequential read | User I/O
2% | 0yas01u2p9ch4 | db file sequential read | User I/O
-- End of ASH snap 1, end=2010-03-22 19:50:29, seconds=5, samples_taken=43
In this case it looks like there are many different statements executed during the 5-second snapper run. The TOP one seems to be the one which was active at least 30% of its time (and waiting for db file sequential read).
As there are multiple different statements reported, all taking a notable amount of response time - and all because of User I/O wait events, this may be a case for investigating IO subsystem problems (as suddenly all SQL statements report IO as their top waits).
NB! There‘s one more interesting and important thing to see - the sum of Active% samples is 54% only! This means that this session was ative only (roughly) 54% during the sampling time! Therefore the rest of time it was idle, waiting for next request to come in from the application, over the network. In cases where you see the database session being active only a small minority of time, then it doesn‘t make sense to tune anything in the database - you‘ll need to see why isn‘t the application sending new requests to the database fast enough.
The main reasons for session‘s being idle are simple:
- User think time. User went to drink coffee or their PC is so slow that they can‘t do much with their application :-)
- Application think time. This often happens when application servers are overloaded or have some bad code in them. The application is so busy or stuck so that it isn‘t able to send the requests to database and process resulting data too fast.
- Lastly, network latency and throughput. I deliberately left this as last, as it makes sense to see what the (higher levels) users and applications are actually doing, instead of immediately assuming that the problem must be in network.
Note that as I said earlier, Snapper is a tool for getting you the facts, performance numbers. It doesn‘t make performance recommendations for you, you still need to follow a systematic approach for troubleshooting and tuning, Snapper is tool which supports it. I will write more about systematic tuning & troubleshooting approach in my living book about Oracle Performance (or you could just attend one of my seminars ;-)
So, that‘s all about single session snapshots, but hey, Snapper can do more!
Sometimes you have multiple sessions you want to measure, sometimes you don‘t even know the SIDs in advance and sometimes you want to see the whole instance activity. Snapper can help out here too!
Running Snapper in ASH mode on all sessions (the whole instance)
Making snapper to measure activity of all sessions is easy, you just specify all instead of the SID:
SQL> @snapper ash 5 1 all
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
-----------------------------------------------------------------------
Active% | SQL_ID | EVENT | WAIT_CLASS
-----------------------------------------------------------------------
69% | 3h1z39qtgwc5h | db file scattered read | User I/O
29% | fy8n9175jyj7s | db file scattered read | User I/O
9% | | log file parallel write | System I/O
2% | fy8n9175jyj7s | ON CPU | ON CPU
2% | | control file parallel wri | System I/O
-- End of ASH snap 1, end=2010-03-22 17:33:17, seconds=5, samples_taken=45
PL/SQL procedure successfully completed.
Note that the Active% shows still the response time of one (1) session! If let say 2 sessions are waiting for a lock all their response time, you‘d see 200% wait time for it.
Let say I want to break down how much individual sessions are waiting for some event, I can add sid column to the ASH parameter (as seen below), now the group by for TOP report is done by SID,event and wait_class:
SQL> @snapper ash=sid+event+wait_class 5 1 all
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
--------------------------------------------------------------
Active% | SID | EVENT | WAIT_CLASS
--------------------------------------------------------------
95% | 133 | db file scattered read | User I/O
8% | 165 | control file parallel wri | System I/O
5% | 133 | db file sequential read | User I/O
-- End of ASH snap 1, end=2010-03-22 17:33:53, seconds=5, samples_taken=40
PL/SQL procedure successfully completed.
See how the SID 133 had waited ~95% of its response time for db file scattered read and rest 5% for db file sequential read. The occasional CPU usage between IO operations was so short that Snapper‘s V$SESSION sampling didn‘t even see it, in other words, this session did not use CPU significantly during the Snapper run.
Taking multiple Session Activity reports with Snapper
Sometimes just one TOP report as seen above may not be enough. You might want to look into the session / instance activity data from multiple different angles (group the ASH samples by different fields). That‘s why I have added ash1, ash2 and ash3 parameters to Snapper syntax, you can show up to 4 ASH TOP activity breakdowns in one Snapper run. For example, let say I want to break the session activity down by also PLSQL package‘s object_id and procedure ID in it, to see whether there‘s some PL/SQL package causing most of the work (these columns are available from 10.2.0.3 in V$SESSION):
SQL> @snapper ash=sid+event+wait_class,ash1=plsql_object_id+plsql_subprogram_id+sql_id 5 1 all
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
--------------------------------------------------------------
Active% | SID | EVENT | WAIT_CLASS
--------------------------------------------------------------
70% | 133 | db file scattered read | User I/O
25% | 133 | db file sequential read | User I/O
9% | 165 | control file parallel wri | System I/O
7% | 166 | log file parallel write | System I/O
5% | 133 | ON CPU | ON CPU
---------------------------------------------------
Active% | PLSQL_OBJE | PLSQL_SUBP | SQL_ID
---------------------------------------------------
43% | | | dv59rkngpa8m1
30% | | | b8qywu6ug00u3
23% | | | fgkm2nvqhyyqh
16% | | |
2% | 5357 | 135 | 82hxvr8kxuzjq
2% | 4345 | 105 | 1gu8t96d0bdmu
-- End of ASH snap 1, end=2010-03-22 17:34:51, seconds=5, samples_taken=44
Let say I want to include one more report, which shows me TOP program, module and action from the session activity samples:
SQL> @snapper ash=sid+event+wait_class,ash1=plsql_object_id+plsql_subprogram_id+sql_id,ash2=program+module+action 5 1 all
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
--------------------------------------------------------------
Active% | SID | EVENT | WAIT_CLASS
--------------------------------------------------------------
100% | 133 | db file scattered read | User I/O
5% | 165 | control file parallel wri | System I/O
2% | 162 | ON CPU | ON CPU
2% | 167 | db file parallel write | System I/O
2% | 166 | log file parallel write | System I/O
---------------------------------------------------
Active% | PLSQL_OBJE | PLSQL_SUBP | SQL_ID
---------------------------------------------------
77% | | | a5xyjp9gt796s
23% | | | 4g4u44bk830ms
12% | | |
-------------------------------------------------------------------------------------------
Active% | PROGRAM | MODULE | ACTION
-------------------------------------------------------------------------------------------
100% | [email protected] (TNS V1-V3) | [email protected] (TNS V1-V3) |
5% | [email protected] (CKPT) | |
2% | [email protected] (DBW0) | |
2% | [email protected] (CJQ0) | |
2% | [email protected] (LGWR) | |
-- End of ASH snap 1, end=2010-03-22 17:35:06, seconds=5, samples_taken=43
Similarly you can use ash3 parameter. Note that if you just use the ash parameters without = and column list, it uses some default TOP groupings, which are configurable - look for CONFIG in snapper.sql file.
All the stuff above is available from Snapper v3. However it‘s only a part of Snapper‘s full capabilities. Sometimes knowing the TOP SQL_ID and wait event is not enough. Think about cases where a session is 100% on CPU and doesn‘t wait for anything and there‘s nothing obviously wrong with the SQL execution plan. This is when you want to know what exactly is the session doing. This is where the Oracle‘s dynamic performance counters come into play - I‘m talking mainly about V$SESSTAT statistics:
Snapper V$ Performance Counter / Statistics mode
Snapper has had the Statistics mode since version 1. That‘s the reason why I initially wrote Snapper, to help me with performance troubleshooting, especially in cases where the conventional tools like SQL trace or instance-level performance tools like AWR/Statspack didn‘t show anything useful. Starting from v3, Snapper does not automatically show you the V$SESSTAT stats, as Snapper is meant to be used as an instance-wide troubleshooting tool now as well (and querying V$SESSTAT for all sessions may be expensive when you have thousands of sessions in your instance).
So, if you want to drill down to V$SESSTAT samples, you‘ll need to use stats parameter, which tells Snapper to take snapshots of V$SESSTAT and other V$ views (or instead you could useall which enables both ash and stats)
Additionally you can specify what kind of stats to capture, in the gather option. The options are following (taken directly from documentation section in Snapper script‘s header):
- Session-level stats:
- s - Session Statistics from v$sesstat
- t - Session Time model info from v$sess_time_model
- w - Session Wait statistics from v$session_event and v$session_wait
- Instance-level stats:
- L - instance Latch get statistics ( gets + immediate_gets ) from v$latch
- e - instance Enqueue lock get statistics from v$enqueue_stat
- b - buffer get Where statistics from x$kcbsw -- useful in versions up to 10.2.x
- a - All above
If the gather option is omitted (but stats is enabled) then Snapper will collect the session level stats (s,t,w) only.
An example follows, I‘m taking ash session activity snapshots from all sessions, but I also ask Snapper to gather Time Model Stats (t) and V$SESSTAT stats (s), but only include time model stats (tinclude) which have string %CPU% in the name and include only these V$SESSTAT stats (sinclude) which contain word %parse%:
SQL> @snapper ash=event+wait_class,stats,gather=ts,tinclude=CPU,sinclude=parse 5 1 all
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
----------------------------------------------------------------------------------------------------------------------
SID, USERNAME , TYPE, STATISTIC , DELTA, HDELTA/SEC, %TIME, GRAPH
----------------------------------------------------------------------------------------------------------------------
119, SYS , STAT, parse count (total) , 12, 2.4,
133, SYS , STAT, parse time cpu , 404, 80.8,
133, SYS , STAT, parse time elapsed , 418, 83.6,
133, SYS , STAT, parse count (total) , 11241, 2.25k,
133, SYS , STAT, parse count (hard) , 11241, 2.25k,
159, (J000) , TIME, DB CPU , 859, 171.8us, .0%, | |
161, (MMON) , STAT, parse count (total) , 5, 1,
161, (MMON) , STAT, parse count (hard) , 3, .6,
161, (MMON) , TIME, background cpu time , 8629, 1.73ms, .2%, | |
162, (CJQ0) , STAT, parse count (total) , 1, .2,
162, (CJQ0) , TIME, background cpu time , 3242, 648.4us, .1%, | |
167, (DBW0) , TIME, background cpu time , 142, 28.4us, .0%, | |
170, (PMON) , TIME, background cpu time , 1267, 253.4us, .0%, | |
-- End of Stats snap 1, end=2010-03-22 18:02:28, seconds=5
-----------------------------------------------------
Active% | EVENT | WAIT_CLASS
-----------------------------------------------------
105% | ON CPU | ON CPU
17% | db file sequential read | User I/O
2% | log file parallel write | System I/O
-- End of ASH snap 1, end=2010-03-22 18:02:28, seconds=5, samples_taken=41
PL/SQL procedure successfully completed.
In upper part of above output, see how Snapper‘s stats mode will easily bring out a session 133 which is doing 2.25 thousand hard parses per second (which is a lot!). I could use any of the other stats available in V$SESSTAT (over 600 different stats for each session in Oracle 11.2). For example if I had used "redo size" in sinclude parameter, I would have easily seen which session generates the most redo.
Another thing to note is that even though the ASH section below says there was CPU activity worth of 105% of a single session‘s response time (which means that there must have been more than one session using that CPU), the time model stats above (stats with type=TIME) don‘t report significant DB CPU usage at all. The problem here is measurement granularity. Time model stats are updated in the V$ views only in the end of the database call, but if the database call is a long-running one (like in my test case) then the stats in V$SESS_TIME_MODEL are updated roughly every 5 seconds by default. Thanks to my short Snapper run time (5 seconds) the script apparently finished before the V$SESS_TIME_MODEL in-memory array update took place by that session with the long running database call. If you run snapper with longer sampling time, like 60 second, you should see all the time model stats in place.
So far we‘ve covered how to run snapper on one session or the whole instance. Sometimes you‘d want to monitor all sessions of a specific user, service or program. This is possible in Snapper too:
Running snapper on a subset of instances sessions
Starting from v3, Snapper has convenient ways for specifying sessions belonging so specific user, application, service, etc. For example, instead of specifying the SID as 4th parameter, you can just write user=XYZ (or username=XYZ):
SQL> @snapper ash=sid+event+wait_class,ash1=sid+sqlid+module,stats,gather=ts,tinclude=CPU,sinclude=parse 5 1 user=SOE
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
----------------------------------------------------------------------------------------------------------------------
SID, USERNAME , TYPE, STATISTIC , DELTA, HDELTA/SEC, %TIME, GRAPH
----------------------------------------------------------------------------------------------------------------------
9, SOE , TIME, DB CPU , 30000, 6ms, .6%, |@ |
17, SOE , TIME, DB CPU , 70000, 14ms, 1.4%, |@ |
21, SOE , TIME, DB CPU , 30000, 6ms, .6%, |@ |
144, SOE , STAT, parse count (total) , 2, .4,
144, SOE , TIME, DB CPU , 370000, 74ms, 7.4%, |@ |
156, SOE , TIME, DB CPU , 50000, 10ms, 1.0%, |@ |
-- End of Stats snap 1, end=2010-03-22 18:34:09, seconds=5
--------------------------------------------------------------
Active% | SID | EVENT | WAIT_CLASS
--------------------------------------------------------------
100% | 21 | read by other session | User I/O
93% | 144 | read by other session | User I/O
83% | 156 | read by other session | User I/O
73% | 9 | read by other session | User I/O
54% | 17 | db file scattered read | User I/O
27% | 9 | db file scattered read | User I/O
27% | 17 | read by other session | User I/O
17% | 156 | db file scattered read | User I/O
17% | 17 | direct path read | User I/O
7% | 144 | ON CPU | ON CPU
--------------------------------------------------------------
Active% | SID | SQL_ID | MODULE
--------------------------------------------------------------
100% | 21 | 3jbwa65aqmkvm | Process Orders
100% | 9 | 3jbwa65aqmkvm | Process Orders
100% | 144 | 3jbwa65aqmkvm | Process Orders
100% | 156 | 3jbwa65aqmkvm | Process Orders
100% | 17 | 3jbwa65aqmkvm | Process Orders
-- End of ASH snap 1, end=2010-03-22 18:34:09, seconds=5, samples_taken=41
Thanks to the parameters specified above (ash and ash1) we do get different breakdowns of the same session activity data and we have measured only the sessions belonging to user SOE (in other words, where username=‘SOE‘ in V$SESSION).
In additon to user you can use other (self-explanatory) parameters:
- username (same as user)
- sid
- spid (same as pid and ospid)
- program
- machine
- osuser
- module
- action
- client_id
You can not combine these parameters into any AND or OR conditions though, you can only pass in one parameter at a time using the above convenient syntax.
However if you want to be very precise about what sessions Snapper monitors (if you want to add multiple and/or conditions to select sessions of interest), then you can do the session selection the old way (supported in Snapper v1 and v2), check the red text:
SQL> @snapper ash=sid+event+wait_class,ash1=sid+sqlid+module,stats,gather=ts,tinclude=CPU,sinclude=parse 5 1 "select sid from v$session where username = ‘SOE‘ and program like ‘JDBC%‘"
Sampling...
-- Session Snapper v3.10 by Tanel Poder @ E2SN ( http://tech.e2sn.com )
----------------------------------------------------------------------------------------------------------------------
SID, USERNAME , TYPE, STATISTIC , DELTA, HDELTA/SEC, %TIME, GRAPH
----------------------------------------------------------------------------------------------------------------------
9, SOE , TIME, DB CPU , 50000, 10ms, 1.0%, |@ |
17, SOE , TIME, DB CPU , 60000, 12ms, 1.2%, |@ |
21, SOE , TIME, DB CPU , 70000, 14ms, 1.4%, |@ |
144, SOE , TIME, DB CPU , 60000, 12ms, 1.2%, |@ |
156, SOE , TIME, DB CPU , 50000, 10ms, 1.0%, |@ |
-- End of Stats snap 1, end=2010-03-22 18:34:32, seconds=5
--------------------------------------------------------------
Active% | SID | EVENT | WAIT_CLASS
--------------------------------------------------------------
97% | 9 | read by other session | User I/O
74% | 144 | direct path read | User I/O
72% | 156 | db file scattered read | User I/O
72% | 21 | direct path read | User I/O
72% | 17 | direct path read | User I/O
28% | 156 | read by other session | User I/O
26% | 17 | db file scattered read | User I/O
26% | 21 | read by other session | User I/O
26% | 144 | read by other session | User I/O
3% | 9 | db file scattered read | User I/O
--------------------------------------------------------------
Active% | SID | SQL_ID | MODULE
--------------------------------------------------------------
100% | 21 | 3jbwa65aqmkvm | Process Orders
100% | 9 | 3jbwa65aqmkvm | Process Orders
100% | 144 | 3jbwa65aqmkvm | Process Orders
100% | 156 | 3jbwa65aqmkvm | Process Orders
100% | 17 | 3jbwa65aqmkvm | Process Orders
-- End of ASH snap 1, end=2010-03-22 18:34:32, seconds=5, samples_taken=39
PL/SQL procedure successfully completed.
SQL>
You can write any subquery between double-quotes as the SID parameter, as long as it fits onto the command line and returns a single number column with a list of SIDs in it!
In my case I "select SID from V$SESSION where ...." but this query doesn‘t even have to query V$SESSION, but may query let say some E-Business Suite, PeopleSoft or SAP batch job scheduling table (with currently running batch jobs SIDs in it) instead!
脚本内容:
---------------------------------------------------------------------------- -- -- File name: snapper.sql (Oracle Session Snapper v4) -- Purpose: An easy to use Oracle session-level performance measurement tool -- which does NOT require any database changes nor creation of any -- database objects! -- -- This is very useful for ad-hoc performance diagnosis in environments -- with restrictive change management processes, where creating -- even temporary tables and PL/SQL packages is not allowed or would -- take too much time to get approved. -- -- All processing is done by a few sqlplus commands and an anonymous -- PL/SQL block, all that‘s needed is SQLPLUS access (and if you want -- to output data to server-side tracefile then execute rights on -- DBMS_SYSTEM). Snapper only queries some V$ views (and in advanced -- mode some X$ fixed tables, but it does not enable any traces nor -- use oradebug. -- -- The output is formatted the way it could be easily post-processed -- by either Unix string manipulation tools or loaded to spreadsheet. -- -- Snapper v4.20 Oracle 12c CDB and PDB grouping -- Snapper v4 supports RAC and requires Oracle 10.1 or a newer DB version. -- Snapper v3.5 works on Oracle versions starting from Oracle 9.2 (no RAC support) -- -- Note1: The "ASH" functionality in Snapper just samples GV$SESSION view, -- so you do NOT need Diagnostics Pack licenses to use Snapper‘s -- "ASH" output -- -- Note2: Snapper just reports you performance metric deltas in a snapsphot -- and does not attempt to solve any performance problems for you. -- You still need to interpret and understand these standard Oracle -- metrics yourself -- -- Author: Tanel Poder ([email protected]) -- Copyright: (c) Tanel Poder - http://blog.tanelpoder.com - All rights reserved. -- -- Disclaimer: This script is provided "as is", so no warranties or guarantees are -- made about its correctness, reliability and safety. Use it at your -- own risk! -- -- License: 1) You may use this script for your (or your businesses) purposes for free -- 2) You may modify this script as you like for your own (or your businesses) purpose, -- but you must always leave this script header (the entire comment section), including the -- author, copyright and license sections as the first thing in the beginning of this file -- 3) You may NOT publish or distribute this script or any variation of it PUBLICLY -- (including, but not limited to uploading it to your public website or ftp server), -- instead just link to its location in blog.tanelpoder.com -- 4) You may distribute this script INTERNALLY in your company, for internal use only, -- for example when building a standard DBA toolset to be deployed to all -- servers or DBA workstations -- -- -- Thanks to: Adrian Billington, Jamey Johnston, Marcus M?nnig, Hans-Peter Sloot, -- Ronald Rood and Peter Bach for bugfixes, additions and improvements -- -------------------------------------------------------------------------------- -- -- The Session Snapper v4.24 ( USE AT YOUR OWN RISK !!! ) -- (c) Tanel Poder ( http://blog.tanelpoder.com ) -- -- -- +-----=====O=== Welcome to The Session Snapper! (Yes, you are looking at a cheap ASCII -- / imitation of a fish and a fishing rod. -- | Nevertheless the PL/SQL code below the -- | fish itself should be helpful for quick -- | catching of relevant Oracle performance -- | information. -- | So I wish you happy... um... snapping? -- | ) -- | ...... -- | iittii,,.... -- ? iiffffjjjjtttt,, -- ..;;ttffLLLLffLLLLLLffjjtt;;.. -- ..ttLLGGGGGGLLffLLLLLLLLLLLLLLffjjii,, ..ii,, -- ffGGffLLLLLLjjttjjjjjjjjffLLLLLLLLLLjjii.. ..iijj;;.... -- ffGGLLiittjjttttttiittttttttttffLLLLLLGGffii.. ;;LLLLii;;;;.. -- ffEEGGffiittiittttttttttiiiiiiiittjjjjffLLGGLLii.. iiLLLLLLttiiii,, -- ;;ffDDLLiiiitt,,ttttttttttttiiiiiiiijjjjjjffLLLLffttiiiiffLLGGLLjjtttt;;.. -- ..ttttjjiitt,,iiiiiittttttttjjjjttttttttjjjjttttjjttttjjjjffLLDDGGLLttii.. -- iittiitttt, ;;iittttttttjjjjjjjjjjttjjjjjjffffffjjjjjjjjjjLLDDGGLLtt;;.. -- jjjjttttii:. ..iiiiffLLGGLLLLLLLLffffffLLLLLLLLLLLLLLLLffffffLLLLLLfftt,, -- iittttii,,;;,,ttiiiiLLLLffffffjjffffLLLLLLLLffLLffjjttttttttttjjjjffjjii.. -- ,,iiiiiiiiiittttttiiiiiiiiiijjffffLLLLLLLLffLLffttttttii;;;;iiiitttttttt;;.. -- ..iittttttffffttttiiiiiiiiiittttffjjjjffffffffttiittii:: ....,,;;iittii;; -- ..;;iittttttttttttttttiiiiiittttttttttjjjjjjtttttt;; ..;;ii;;.. -- ..;;;;iittttttjjttiittttttttttttttjjttttttttii.. .... -- ....;;;;ttjjttttiiiiii;;;;;;iittttiiii.. -- ..;;ttttii;;.... ..;;;;.... -- ..iiii;;.. -- ..;;,, -- .... -- -- -- Usage: -- -- snapper.sql <ash[1-3]|stats|all>[,out][,trace][,pagesize=X][,gather=[s][t][w][l][e][b][a]]> <seconds_in_snap> <snapshot_count> <sid(s)_to_snap> -- -- ash - sample session activity ASH style, waits and SQL_IDs from gv$session and -- print a TOP SQL/wait report from these samples (this is the default from -- Snapper 3.0). The columns chosen for TOP calculation are defined in CONFIG -- section below. -- -- ash=sql_id+event+wait_class -- - the above example illustrates that you can also specify the gv$session -- columns for TOP report yourself. The above example will show a TOP -- activity report grouped by SQL_ID + EVENT + WAIT_CLASS -- Note that the columns are separated by a "+" sign (as comma is a snapper -- parameter separator, not ASH column separator) -- -- ash1 -- ash2 -- ash3 - in addition to "ash" report you can have 3 more reported during the same -- snapper sampling snapshot. Just include ash1=col1+col2,ash2=col3+col4,... -- parameters if you want multiple TOP reports per Snapper snapshot -- -- stats - sample gv$sesstat,gv$sess_time_model,gv$session_event performance counters -- and report how much these stats increased (deltas) during Snapper run -- all - report both ASH and stats sections -- -- out - use dbms_output.put_line() for output. output will be seen only when -- Snapper run completes due to dbms_output limitations. This is the default. -- trace - write output to server process tracefile -- (you must have execute permission on sys.dbms_system.ksdwrt() for that, -- you can use both out and trace parameters together if you like ) -- -- pagesize - display header lines after X snapshots. if pagesize=0 don‘t display -- any headers. pagesize=-1 will display a terse header only once -- -- gather - if omitted, gathers s,t,w statistics (see below) -- - if specified, then gather following: -- -- Session-level stats: -- s - Session Statistics from gv$sesstat -- t - Session Time model info from gv$sess_time_model -- w - Session Wait statistics from gv$session_event and gv$session_wait -- -- Instance-level stats: -- l - instance Latch get statistics ( gets + immediate_gets ) -- e - instance Enqueue lock get statistics -- b - buffer get Where statistics -- useful in versions up to 10.2.x -- a - All above -- -- sinclude - if specified, then show only GV$SESSTAT stats which match the -- LIKE pattern of sinclude (REGEXP_LIKE in 10g+) -- linclude - if specified, then show only GV$LATCH latch stats which match the -- LIKE pattern of linclude (REGEXP_LIKE in 10g+) -- tinclude - if specified, then show only GV$SESS_TIME_MODEL stats which match the -- LIKE pattern of tinclude (REGEXP_LIKE in 10g+) -- winclude - if specified, then show only GV$SESSION_EVENT wait stats which match the -- LIKE pattern of winclude (REGEXP_LIKE in 10g+) -- -- you can combine above parameters in any order, separate them by commas -- !!!don‘t use spaces as otherwise they are treated as next parameters by sqlplus !!! -- !!!if you want to use spaces, enclose the whole sqlplus parameter in doublequotes !!! -- -- <seconds_in_snap> - the number of seconds between taking snapshots -- <snapshot_count> - the number of snapshots to take ( maximum value is power(2,31)-1 ) -- -- <sids_to_snap> can be either one sessionid, multiple sessionids separated by -- commas or a SQL statement which returns a list of SIDs (if you need spaces -- in that parameter text, enclose it in double quotes). -- -- if you want to snap ALL sids, use "all" as value for -- <sids_to_snap> parameter -- -- alternatively you can use "select sid from gv$session" as value for <sids_to_snap> -- parameter to capture all SIDs. you can write any query (with multiple and/or) -- conditions to specify complex rules for capturing only the SIDs you want -- -- starting from version 3.0 there are further session_id selection options available in -- instead of sid you can write such expressions for snapper‘s <sids_to_snap> parameter: -- -- sid=123 -- take sid 123 only (the same as just writing 123) -- user=tanel -- take all sessions where username is ‘tanel‘ (case insensitive) -- -- this is the same as writing following subquery for the -- -- <sids_to_snap> parameter: -- select sid from gv$session where lower(username) like lower(‘tanel‘) -- -- user=tanel% -- take all sessions where username begins with ‘tanel%‘ (case insensitive) -- -- the = means actually LIKE in SQL terms in this script -- -- spid=1234 -- all these 3 parameters do the same thing: -- ospid=1234 -- they look up the sessions(s) where the processes OS PID=1234 -- pid=1234 -- this is useful for quickly looking up what some OS process is doing -- -- if it consumes too much of some resource -- qc=123 -- qcsid=123 -- show query coordinator and all PX slave sessions -- -- program=sqlplus% -- the following examples filter by corresponding gv$session coulmns -- machine=linux01 -- machine -- osuser=oracle -- os username -- module=HR -- module -- "action=Find Order" -- note the quotes because there is a space inside the parameter -- -- value -- client_id=tanelpoder -- show only sessions where client_identifier is set to tanelpoder -- -- this is very useful in cases with (properly instrumented) -- -- connection pools -- -- -- Note that if you want to change some "advanced" snapper configuration parameters -- or default values then search for CONFIG in this file to see configurable -- variable section -- -- -- Examples: -- NB! Read the online examples, these are more detailed and list script output too! -- -- http://tech.e2sn.com/oracle-scripts-and-tools/session-snapper -- -- @snapper ash,stats 1 1 515 -- (Output one 1-second snapshot of session 515 using dbms_output and exit -- Wait, gv$sesstat and gv$sess_time_model statistics are reported by default -- Starting from V3 the ASH style session activity report is shown as well) -- -- @snapper stats,gather=w 1 1 515 -- (Output one 1-second snapshot of session 515 using dbms_output and exit -- only Wait event statistics are reported, no ASH) -- -- @snapper ash,gather=st 1 1 515 -- (Output one 1-second snapshot of session 515 using dbms_output and exit -- only gv$sesstat and gv$sess_Time_model statistics are gathered + ASH) -- -- @snapper trace,ash,gather=stw,pagesize=0 10 90 117,210,313 -- (Write 90 10-second snapshots into tracefile for session IDs 117,210,313 -- all statistics are reported, do not print any headers) -- -- @snapper trace,ash 900 999999999 "select sid from v$session" -- (Take a snapshot of ALL sessions every 15 minutes and write the output to trace, -- loop (almost) forever ) -- -- @snapper out,trace 300 12 "select sid from v$session where username=‘APPS‘" -- (Take 12 5-minute snapshots of all sessions belonging to APPS user, write -- output to both dbms_output and tracefile) -- -- Notes: -- -- Snapper does not currently detect if a session with given SID has -- ended and been recreated between snapshots, thus it may report bogus -- statistics for such sessions. The check and warning for that will be -- implemented in a future version. -- -------------------------------------------------------------------------------- set termout off tab off verify off linesize 999 trimspool on trimout on null "" --debug: -- set termout on serveroutput on -- Get parameters (future snapper v4.x extended syntax: @snapper <options> <"begin"|"end"|sleep#> <"snap_name"|snap_count> <sid>) define snapper_options="&1" define snapper_sleep="&2" define snapper_count="&3" define snapper_sid="&4" -- The following code is required for making this script "dynamic" as due to -- different Oracle versions, script parameters or granted privileges some -- statements might not compile if not adjusted properly. define _IF_ORA12_OR_HIGHER="--" define _IF_LOWER_THAN_ORA12="--" define _IF_ORA11_OR_HIGHER="--" define _IF_LOWER_THAN_ORA11="--" define _IF_DBMS_SYSTEM_ACCESSIBLE="/* dbms_system is not accessible" -- /*dummy*/ -- this "dummy" is here just for avoiding VIM syntax highlighter going crazy due to previous line define _IF_X_ACCESSIBLE="--" -- plsql_object_id columns available in v$session (from 10.2.0.3) define _YES_PLSQL_OBJ_ID="--" define _NO_PLSQL_OBJ_ID="" -- blocking_instance available in v$session (from 10.2) define _YES_BLK_INST="--" define _NO_BLK_INST="" -- snapper v4 manual before/after snapshotting define _MANUAL_SNAPSHOT="--" define _USE_DBMS_LOCK="" -- set the noprint‘s value to "noprint" if you don‘t want these temporary variables to show up in a sqlplus spool file -- however, setting noprint="noprint" can cause errors in Oracle SQL Developer v4.0.x for some reason (OK in v4.1) DEF noprint="" col snapper_ora12higher &noprint new_value _IF_ORA12_OR_HIGHER col snapper_ora12lower &noprint new_value _IF_LOWER_THAN_ORA12 col snapper_ora12 &noprint new_value _IF_ORA12_OR_HIGHER col snapper_ora11higher &noprint new_value _IF_ORA11_OR_HIGHER col snapper_ora11lower &noprint new_value _IF_LOWER_THAN_ORA11 col dbms_system_accessible &noprint new_value _IF_DBMS_SYSTEM_ACCESSIBLE col x_accessible &noprint new_value _IF_X_ACCESSIBLE col no_plsql_obj_id &noprint new_value _NO_PLSQL_OBJ_ID col yes_plsql_obj_id &noprint new_value _YES_PLSQL_OBJ_ID col no_blk_inst &noprint new_value _NO_BLK_INST col yes_blk_inst &noprint new_value _YES_BLK_INST col manual_snapshot &noprint new_value _MANUAL_SNAPSHOT col use_dbms_lock &noprint new_value _USE_DBMS_LOCK col snapper_sid &noprint new_value snapper_sid -- sid_filter and inst_filter are the new RAC gv$ friendly way to filter sessions in Snapper v4 def sid_filter="/**/" def inst_filter="/**/" col sid_filter &noprint new_value sid_filter col inst_filter &noprint new_value inst_filter -- initialize, precompute and determine stuff var v varchar2(100) var x varchar2(10) var sid_filter varchar2(4000) var inst_filter varchar2(4000) -- this is here for a reason -- im extracting the first word of the snapper_sid (if its a complex expression, not just a single SID) -- by relying on how DEF and & assignment treat spaces in strings def ssid_begin=&snapper_sid declare o sys.dbms_describe.number_table; p sys.dbms_describe.number_table; l sys.dbms_describe.number_table; a sys.dbms_describe.varchar2_table; dty sys.dbms_describe.number_table; def sys.dbms_describe.number_table; inout sys.dbms_describe.number_table; len sys.dbms_describe.number_table; prec sys.dbms_describe.number_table; scal sys.dbms_describe.number_table; rad sys.dbms_describe.number_table; spa sys.dbms_describe.number_table; tmp number; lv_sid_filter varchar2(4000); lv_inst_filter varchar2(4000); function get_filter(str in varchar2) return varchar2 is ret varchar2(1000); begin if str like ‘%@%‘ then --dbms_output.put_line(‘get_filter:1 str= ‘||str); ret := lower(trim(regexp_replace(substr(str,instr(str,‘=‘)+1), ‘^(.+)@([[:digit:]\*]+)(.*)‘, ‘\1‘))); else --dbms_output.put_line(‘get_filter:2 str= ‘||str); ret := lower(trim(substr(str,instr(str,‘=‘)+1))); end if; --dbms_output.put_line(‘get_filter = ‘ || ret); return ret; end get_filter; begin -- compute inst_filter case when regexp_instr(‘&ssid_begin‘,‘@‘) = 0 then lv_inst_filter := ‘/* inst_filter */ s.inst_id=USERENV(‘‘Instance‘‘)‘; when regexp_instr(‘&ssid_begin‘,‘@\*‘) > 0 or ‘&ssid_begin‘ like ‘(%‘ then lv_inst_filter := ‘/* inst_filter */ 1=1‘; when regexp_instr(‘&ssid_begin‘,‘@\d+‘) > 0 then lv_inst_filter := ‘s.inst_id = ‘ || regexp_replace(‘&ssid_begin‘, ‘^(.+)@(\d+)(.*)‘, ‘\2‘); else lv_inst_filter := ‘s.inst_id=USERENV(‘‘Instance‘‘)‘; --when regexp_instr(‘&ssid_begin‘,‘@\d+‘) > 0 then regexp_replace(snapper_sid, ‘^(.+)@\d+‘, ‘\1‘) || ‘ AND inst_id = ‘ || regexp_replace(snapper_sid, ‘^(.+)@(\d+)(.*)‘, ‘\2‘) end case; -- compute sid_filter case when trim(lower(‘&ssid_begin‘)) like ‘con_id=%‘ then lv_sid_filter := ‘s.con_id in (‘||get_filter(‘&ssid_begin‘)||‘)‘; when trim(lower(‘&ssid_begin‘)) like ‘sid=%‘ then lv_sid_filter := ‘s.sid in (‘ ||get_filter(‘&ssid_begin‘)||‘)‘; when trim(lower(‘&ssid_begin‘)) like ‘audsid=%‘ then lv_sid_filter := ‘s.audsid in (‘||get_filter(‘&ssid_begin‘)||‘)‘; when trim(lower(‘&ssid_begin‘)) like ‘user=%‘ then lv_sid_filter := ‘lower(username) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘username=%‘ then lv_sid_filter := ‘lower(username) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘machine=%‘ then lv_sid_filter := ‘lower(machine) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘program=%‘ then lv_sid_filter := ‘lower(program) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘service=%‘ then lv_sid_filter := ‘lower(service_name) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘module=%‘ then lv_sid_filter := ‘lower(module) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘action=%‘ then lv_sid_filter := ‘lower(action) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘osuser=%‘ then lv_sid_filter := ‘lower(osuser) like ‘‘‘ ||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘client_id=%‘ then lv_sid_filter := ‘lower(client_identifier) like ‘‘‘||get_filter(‘&ssid_begin‘)||‘‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘spid=%‘ then lv_sid_filter := ‘(s.inst_id,s.paddr) in (select /*+ UNNEST */ inst_id,addr from gv$process where spid in (‘||get_filter(‘&ssid_begin‘)||‘))‘; when trim(lower(‘&ssid_begin‘)) like ‘ospid=%‘ then lv_sid_filter := ‘(s.inst_id,s.paddr) in (select /*+ UNNEST */ inst_id,addr from gv$process where spid in (‘||get_filter(‘&ssid_begin‘)||‘))‘; when trim(lower(‘&ssid_begin‘)) like ‘pid=%‘ then lv_sid_filter := ‘(s.inst_id,s.paddr) in (select /*+ UNNEST */ inst_id,addr from gv$process where spid in (‘||get_filter(‘&ssid_begin‘)||‘))‘; when trim(lower(‘&ssid_begin‘)) like ‘qcsid=%‘ then lv_sid_filter := ‘(s.inst_id,s.sid) in (select /*+ NO_UNNEST */ inst_id,sid from gv$px_session where qcsid in (‘||get_filter(‘&ssid_begin‘)||‘))‘; when trim(lower(‘&ssid_begin‘)) like ‘qc=%‘ then lv_sid_filter := ‘(s.inst_id,s.sid) in (select /*+ NO_UNNEST */ inst_id,sid from gv$px_session where qcsid in (‘||get_filter(‘&ssid_begin‘)||‘))‘; when trim(lower(‘&ssid_begin‘)) like ‘all%‘ then lv_sid_filter := ‘1=1‘; when trim(lower(‘&ssid_begin‘)) like ‘bg%‘ then lv_sid_filter := ‘type=‘‘BACKGROUND‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘fg%‘ then lv_sid_filter := ‘type=‘‘USER‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘smon%‘ then lv_sid_filter := ‘program like ‘‘%(SMON)%‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘pmon%‘ then lv_sid_filter := ‘program like ‘‘%(PMON)%‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘ckpt%‘ then lv_sid_filter := ‘program like ‘‘%(CKPT)%‘‘‘; when trim(lower(‘&ssid_begin‘)) like ‘lgwr%‘ then lv_sid_filter := ‘program like ‘‘%(LG__)%‘‘‘; -- 12c multiple adaptive LGWR workers when trim(lower(‘&ssid_begin‘)) like ‘dbwr%‘ then lv_sid_filter := ‘regexp_like(program, ‘‘.*\((DBW.|BW..)\).*‘‘, ‘‘i‘‘)‘; when trim(lower(‘&ssid_begin‘)) like ‘select%‘ then lv_sid_filter := q‘{(s.inst_id,s.sid) in (&snapper_sid)}‘; when trim(lower(‘&ssid_begin‘)) like ‘(%‘ then lv_inst_filter := ‘/* inst_filter2 */ 1=1‘; lv_sid_filter := q‘{(s.inst_id,s.sid) in (&snapper_sid)}‘; else lv_sid_filter := ‘/* sid_filter_else_cond */ s.sid in (‘||get_filter(‘&ssid_begin‘)||‘)‘; end case; :inst_filter := lv_inst_filter; :sid_filter := lv_inst_filter||‘ and ‘||lv_sid_filter; -- this block determines whether dbms_system.ksdwrt is accessible to us -- dbms_describe is required as all_procedures/all_objects may show this object -- even if its not executable by us (thanks to o7_dictionary_accessibility=false) begin execute immediate ‘select count(*) from x$kcbwh where rownum = 1‘ into tmp; :x:= ‘ ‘; -- x$ tables are accessible, so dont comment any lines out exception when others then null; end; sys.dbms_describe.describe_procedure( ‘DBMS_SYSTEM.KSDWRT‘, null, null, o, p, l, a, dty, def, inout, len, prec, scal, rad, spa ); -- we never get to following statement if dbms_system is not accessible -- as sys.dbms_describe will raise an exception :v:= ‘-- dbms_system is accessible‘; exception when others then null; end; / -- this query populates some sqlplus variables required for dynamic compilation used below with mod_banner as ( select replace(banner,‘9.‘,‘09.‘) banner from v$version where rownum = 1 ) select case when substr(banner, instr(banner, ‘Release ‘)+8,2) >= ‘12‘ then ‘‘ else ‘--‘ end snapper_ora12higher, case when substr(banner, instr(banner, ‘Release ‘)+8,2) < ‘12‘ then ‘‘ else ‘--‘ end snapper_ora12lower, case when substr(banner, instr(banner, ‘Release ‘)+8,2) = ‘11‘ then ‘‘ else ‘--‘ end snapper_ora11higher, case when substr(banner, instr(banner, ‘Release ‘)+8,2) < ‘11‘ then ‘‘ else ‘--‘ end snapper_ora11lower, nvl(:v, ‘/* dbms_system is not accessible‘) dbms_system_accessible, nvl(:x, ‘--‘) x_accessible, case when substr( banner, instr(banner, ‘Release ‘)+8, instr(substr(banner,instr(banner,‘Release ‘)+8),‘ ‘) ) >= ‘10.2‘ then ‘‘ else ‘--‘ end yes_blk_inst, case when substr( banner, instr(banner, ‘Release ‘)+8, instr(substr(banner,instr(banner,‘Release ‘)+8),‘ ‘) ) >= ‘10.2‘ then ‘--‘ else ‘‘ end no_blk_inst, case when substr( banner, instr(banner, ‘Release ‘)+8, instr(substr(banner,instr(banner,‘Release ‘)+8),‘ ‘) ) >= ‘10.2.0.3‘ then ‘‘ else ‘--‘ end yes_plsql_obj_id, case when substr( banner, instr(banner, ‘Release ‘)+8, instr(substr(banner,instr(banner,‘Release ‘)+8),‘ ‘) ) >= ‘10.2.0.3‘ then ‘--‘ else ‘‘ end no_plsql_obj_id, case when lower(‘&snapper_options‘) like ‘%,begin%‘ or lower(‘&snapper_options‘) like ‘begin%‘ or lower(‘&snapper_options‘) like ‘%,end%‘ or lower(‘&snapper_options‘) like ‘end%‘ then ‘‘ else ‘--‘ end manual_snapshot, case when lower(‘&snapper_options‘) like ‘%,begin%‘ or lower(‘&snapper_options‘) like ‘begin%‘ or lower(‘&snapper_options‘) like ‘%,end%‘ or lower(‘&snapper_options‘) like ‘end%‘ then ‘--‘ else ‘‘ end use_dbms_lock, :sid_filter sid_filter, :inst_filter inst_filter from mod_banner / -- current workaround: 1st serveroutput command below is for sql developer compatibility -- 2nd is for sqlplus, so that newlines and leading spaces get properly printed set termout off set serveroutput on size 1000000 set serveroutput on size 1000000 format wrapped set termout on prompt Sampling SID &4 with interval &snapper_sleep seconds, taking &snapper_count snapshots... -- let the Snapping start!!! -- main() declare -- Snapper start -- forward declarations procedure output(p_txt in varchar2); procedure fout; function tptformat( p_num in number, p_stype in varchar2 default ‘STAT‘, p_precision in number default 2, p_base in number default 10, p_grouplen in number default 3 ) return varchar2; function getopt( p_parvalues in varchar2, p_extract in varchar2, p_delim in varchar2 default ‘,‘ ) return varchar2; -- type, constant, variable declarations -- trick for holding 32bit UNSIGNED event and stat_ids in 32bit SIGNED PLS_INTEGER pls_adjust constant number(10,0) := power(2,31) - 1; type srec is record (ts timestamp, stype varchar2(4), inst_id number, sid number, statistic# number, value number, event_count number ); type stab is table of srec index by pls_integer; type ltab is table of srec index by varchar2(100); -- lookup tab for various average calculation s1 stab; s2 stab; l1 ltab; l2 ltab; type snrec is record (stype varchar2(4), statistic# number, name varchar2(100)); type sntab is table of snrec index by pls_integer; sn_tmp sntab; sn sntab; type sntab_reverse is table of snrec index by varchar2(100); -- used for looking up stat id from stat name sn_reverse sntab_reverse; tmp_varchar2 varchar2(1000); -- misc function get_useful_average(c in srec /* curr_metric */, p in srec /* all_prev_metrics */) return varchar2; type tmp_sestab is table of gv$session%rowtype index by pls_integer; type sestab is table of gv$session%rowtype index by varchar2(20); g_sessions sestab; g_empty_sessions sestab; type hc_tab is table of number index by pls_integer; -- index is sql hash value type ses_hash_tab is table of hc_tab index by pls_integer; -- index is SID g_ses_hash_tab ses_hash_tab; g_empty_ses_hash_tab ses_hash_tab; -- dbms_debug_vc2coll is a built-in collection present in every oracle db g_ash sys.dbms_debug_vc2coll := new sys.dbms_debug_vc2coll(); g_empty_ash sys.dbms_debug_vc2coll := new sys.dbms_debug_vc2coll(); g_snap1 sys.dbms_debug_vc2coll; g_snap2 sys.dbms_debug_vc2coll; g_ash_samples_taken number := 0; g_count_statname number; g_count_eventname number; g_mysid number; i number; a number; b number; c number; delta number; evcnt number; changed_values number; pagesize number:=99999999999999; missing_values_s1 number := 0; missing_values_s2 number := 0; disappeared_sid number := 0; lv_curr_sid number := 0; -- used for determining whether to print an empty line between session stats d1 timestamp(6); d2 timestamp(6); ash_date1 date; ash_date2 date; lv_gather varchar2(1000); gv_header_string varchar2(1000); lv_data_string varchar2(1000); lv_ash varchar2(1000); lv_stats varchar2(1000); gather_stats number := 0; gather_ash number := 0; g_snap_begin varchar2(1000); g_snap_end varchar2(1000); -- CONFIGURABLE STUFF -- -- this sets what are the default ash sample TOP reporting group by columns g_ash_columns varchar2(1000) := ‘inst_id + sql_id + sql_child_number + event + wait_class‘; g_ash_columns1 varchar2(1000) := ‘inst_id + event + p1 + wait_class‘; g_ash_columns2 varchar2(1000) := ‘inst_id + sid + user + machine + program‘; g_ash_columns3 varchar2(1000) := ‘inst_id + plsql_object_id + plsql_subprogram_id + sql_id‘; g_ash_columns4 varchar2(1000) := ‘con_id + inst_id + sql_id + sql_child_number + event + wait_class‘; g_ash_columns5 varchar2(1000) := ‘con_id + inst_id + event + p1 + wait_class‘; g_ash_columns6 varchar2(1000) := ‘con_id + inst_id + sid + user + machine + program‘; -- output column configuration output_header number := 0; -- 1=true 0=false output_username number := 1; -- v$session.username output_inst number := 0; -- inst output_sid number := CASE WHEN dbms_utility.is_cluster_database = TRUE THEN 0 ELSE 1 END; -- just sid output_inst_sid number := CASE WHEN dbms_utility.is_cluster_database = TRUE THEN 1 ELSE 0 END; -- inst_id and sid together output_time number := 0; -- time of snapshot start output_seconds number := 0; -- seconds in snapshot (shown in footer of each snapshot too) output_stype number := 1; -- statistic type (WAIT,STAT,TIME,ENQG,LATG,...) output_sname number := 1; -- statistic name output_delta number := 1; -- raw delta output_delta_s number := 0; -- raw delta normalized to per second output_hdelta number := 0; -- human readable delta output_hdelta_s number := 1; -- human readable delta normalized to per second output_percent number := 1; -- percent of total time/samples output_eventcnt number := 1; -- wait event count output_eventcnt_s number := 1; -- wait event count output_eventavg number := 1; -- average wait duration output_pcthist number := 1; -- percent of total visual bar (histogram) -- Histograms seem to work for me on 9.2.0.7 + - JBJ2) output_actses number := 1; -- show Average Active Sessions (AAS) in "ASH" activity section output_actses_pct number := 1; -- show AAS as a percentage of a single thread time -- column widths in ASH report output w_inst_id number := 4; w_sid number := 6; w_username number := 20; w_machine number := 20; w_terminal number := 20; w_program number := 25; w_event number := 35; w_wait_class number := 15; w_state number := 8; w_p1 number := 20; w_p2 number := 20; w_p3 number := 20; w_row_wait_obj# number := 10; w_row_wait_file# number := 6; w_row_wait_block# number := 10; w_row_wait_row# number := 6; w_blocking_session_status number := 15; w_blocking_instance number := 12; w_blocking_session number := 12; w_sql_hash_value number := 12; w_sql_id number := 15; w_sql_child_number number := 9; w_plsql_entry_object_id number := 10; w_plsql_entry_subprogram_id number := 10; w_plsql_object_id number := 10; w_plsql_subprogram_id number := 10; w_module number := 25; w_action number := 25; w_client_identifier number := 25; w_service_name number := 25; w_con_id number := 6; w_actses number := 8; w_actses_pct number := 10; -- END CONFIGURABLE STUFF -- -- constants for ash collection extraction from the vc2 collection s_inst_id constant number := 1 ; s_sid constant number := 2 ; s_username constant number := 3 ; s_machine constant number := 4 ; s_terminal constant number := 5 ; s_program constant number := 6 ; s_event constant number := 7 ; s_wait_class constant number := 8 ; s_state constant number := 9 ; s_p1 constant number := 10 ; s_p2 constant number := 11 ; s_p3 constant number := 12 ; s_row_wait_obj# constant number := 13 ; s_row_wait_file# constant number := 14 ; s_row_wait_block# constant number := 15 ; s_row_wait_row# constant number := 16 ; s_blocking_session_status constant number := 17 ; s_blocking_instance constant number := 18 ; s_blocking_session constant number := 19 ; s_sql_hash_value constant number := 20 ; s_sql_id constant number := 21 ; s_sql_child_number constant number := 22 ; s_plsql_entry_object_id constant number := 23 ; s_plsql_entry_subprogram_id constant number := 24 ; s_plsql_object_id constant number := 25 ; s_plsql_subprogram_id constant number := 26 ; s_module constant number := 27 ; s_action constant number := 28 ; s_client_identifier constant number := 29 ; s_service_name constant number := 30 ; s_con_id constant number := 31 ; -- constants for ash collection reporting, which columns to show in report c_inst_id constant number := power(2, s_inst_id ); c_sid constant number := power(2, s_sid ); c_username constant number := power(2, s_username ); c_machine constant number := power(2, s_machine ); c_terminal constant number := power(2, s_terminal ); c_program constant number := power(2, s_program ); c_event constant number := power(2, s_event ); c_wait_class constant number := power(2, s_wait_class ); c_state constant number := power(2, s_state ); c_p1 constant number := power(2, s_p1 ); c_p2 constant number := power(2, s_p2 ); c_p3 constant number := power(2, s_p3 ); c_row_wait_obj# constant number := power(2, s_row_wait_obj# ); c_row_wait_file# constant number := power(2, s_row_wait_file# ); c_row_wait_block# constant number := power(2, s_row_wait_block# ); c_row_wait_row# constant number := power(2, s_row_wait_row# ); c_blocking_session_status constant number := power(2, s_blocking_session_status ); c_blocking_instance constant number := power(2, s_blocking_instance ); c_blocking_session constant number := power(2, s_blocking_session ); c_sql_hash_value constant number := power(2, s_sql_hash_value ); c_sql_id constant number := power(2, s_sql_id ); c_sql_child_number constant number := power(2, s_sql_child_number ); c_plsql_entry_object_id constant number := power(2, s_plsql_entry_object_id ); c_plsql_entry_subprogram_id constant number := power(2, s_plsql_entry_subprogram_id); c_plsql_object_id constant number := power(2, s_plsql_object_id ); c_plsql_subprogram_id constant number := power(2, s_plsql_subprogram_id ); c_module constant number := power(2, s_module ); c_action constant number := power(2, s_action ); c_client_identifier constant number := power(2, s_client_identifier ); c_service_name constant number := power(2, s_service_name ); c_con_id constant number := power(2, s_con_id ); /*--------------------------------------------------- -- proc for outputting data to trace or dbms_output ---------------------------------------------------*/ procedure output(p_txt in varchar2) is begin if (getopt(‘&snapper_options‘, ‘out‘) is not null) or (getopt(‘&snapper_options‘, ‘out‘) is null and getopt(‘&snapper_options‘, ‘trace‘) is null) then dbms_output.put_line(p_txt); end if; -- The block below is a sqlplus trick for conditionally commenting out PL/SQL code &_IF_DBMS_SYSTEM_ACCESSIBLE if getopt(‘&snapper_options‘, ‘trace‘) is not null then sys.dbms_system.ksdwrt(1, p_txt); sys.dbms_system.ksdfls; end if; -- */ end; -- output /*--------------------------------------------------- -- function for converting interval datatype to microseconds ---------------------------------------------------*/ function get_seconds(i interval day to second) return number as s NUMBER; begin s := to_number(extract(second from i)) + to_number(extract(minute from i)) * 60 + to_number(extract(hour from i)) * 60 * 60 + to_number(extract(day from i)) * 60 * 60 * 24; --output(‘get_seconds ‘||to_char(i)||‘ = ‘||to_char(s)); return s; end get_seconds; /*--------------------------------------------------- -- proc for outputting data, utilizing global vars ---------------------------------------------------*/ procedure fout is l_output_username VARCHAR2(100); gsid varchar2(20); begin --if s2(b).stype=‘WAIT‘ then output( ‘DEBUG WAIT ‘ || sn(s2(b).statistic#).name || ‘ ‘ || delta ); end if; --output( ‘DEBUG, Entering fout(), b=‘||to_char(b)||‘ sn(s2(b).statistic#=‘||s2(b).statistic# ); --output( ‘DEBUG, In fout(), a=‘||to_char(a)||‘ b=‘||to_char(b)||‘ s1.count=‘||s1.count||‘ s2.count=‘||s2.count||‘ s2.count=‘||s2.count); gsid := trim(to_char(s2(b).inst_id))||‘,‘||trim(to_char(s2(b).sid)); if output_username = 1 then begin l_output_username := nvl( g_sessions(gsid).username, substr(g_sessions(gsid).program, instr(g_sessions(gsid).program,‘(‘)) ); exception when no_data_found then l_output_username := ‘error‘; when others then raise; end; end if; -- DEBUG --output(‘before‘); --output (CASE WHEN output_eventavg = 1 THEN CASE WHEN s2(b).stype IN (‘WAIT‘) THEN lpad(tptformat(delta / CASE WHEN evcnt = 0 THEN 1 ELSE evcnt END, s2(b).stype), 10, ‘ ‘)||‘ average wait‘ ELSE get_useful_average(s2(b), s1(a)) END END); --output(‘after‘); output( CASE WHEN output_header = 1 THEN ‘SID= ‘ END || CASE WHEN output_inst = 1 THEN to_char(s2(b).inst_id, ‘9999‘)||‘, ‘ END || CASE WHEN output_sid = 1 THEN to_char(s2(b).sid,‘999999‘)||‘, ‘ END || CASE WHEN output_inst_sid = 1 THEN to_char(s2(b).sid,‘99999‘)||‘ ‘||lpad(‘@‘||trim(to_char(s2(b).inst_id, ‘99‘)),3)||‘, ‘ END || CASE WHEN output_username = 1 THEN rpad(CASE s2(b).sid WHEN -1 THEN ‘ ‘ ELSE NVL(l_output_username, ‘ ‘) END, 10)||‘, ‘ END || CASE WHEN output_time = 1 THEN to_char(d1, ‘YYYYMMDD HH24:MI:SS‘)||‘, ‘ END || CASE WHEN output_seconds = 1 THEN to_char(case get_seconds(d2-d1) when 0 then &snapper_sleep else get_seconds(d2-d1) end, ‘9999999‘)||‘, ‘ END || CASE WHEN output_stype = 1 THEN s2(b).stype||‘, ‘ END || CASE WHEN output_sname = 1 THEN rpad(sn(s2(b).statistic#).name, 58, ‘ ‘)||‘, ‘ END || CASE WHEN output_delta = 1 THEN to_char(delta, ‘999999999999‘)||‘, ‘ END || CASE WHEN output_delta_s = 1 THEN to_char(delta/(case get_seconds(d2-d1) when 0 then &snapper_sleep else get_seconds(d2-d1) end),‘999999999‘)||‘, ‘ END || CASE WHEN output_hdelta = 1 THEN lpad(tptformat(delta, s2(b).stype), 10, ‘ ‘)||‘, ‘ END || CASE WHEN output_hdelta_s = 1 THEN lpad(tptformat(delta/(case get_seconds(d2-d1) when 0 then &snapper_sleep else get_seconds(d2-d1) end ), s2(b).stype), 10, ‘ ‘)||‘, ‘ END || CASE WHEN output_percent = 1 THEN CASE WHEN s2(b).stype IN (‘TIME‘,‘WAIT‘) THEN to_char(delta/CASE get_seconds(d2-d1) WHEN 0 THEN &snapper_sleep ELSE get_seconds(d2-d1) END / 10000, ‘9999.9‘)||‘%‘ ELSE ‘ ‘ END END||‘, ‘ || CASE WHEN output_pcthist = 1 THEN CASE WHEN s2(b).stype IN (‘TIME‘,‘WAIT‘) THEN rpad(rpad(‘[‘, ceil(round(delta/CASE get_seconds(d2-d1) WHEN 0 THEN &snapper_sleep ELSE get_seconds(d2-d1) END / 100000,1))+1, CASE WHEN s2(b).stype IN (‘WAIT‘) THEN ‘W‘ WHEN sn(s2(b).statistic#).name = ‘DB CPU‘ THEN ‘@‘ ELSE ‘#‘ END),11,‘ ‘)||‘]‘ ELSE ‘ ‘ END END||‘, ‘ || CASE WHEN output_eventcnt = 1 THEN CASE WHEN s2(b).stype IN (‘WAIT‘) THEN to_char(evcnt, ‘99999999‘) ELSE ‘ ‘ END END||‘, ‘ || CASE WHEN output_eventcnt_s = 1 THEN CASE WHEN s2(b).stype IN (‘WAIT‘) THEN lpad(tptformat((evcnt / case get_seconds(d2-d1) when 0 then &snapper_sleep else get_seconds(d2-d1) end ), ‘STAT‘ ), 10, ‘ ‘) ELSE ‘ ‘ END END||‘, ‘ || CASE WHEN output_eventavg = 1 THEN CASE WHEN s2(b).stype IN (‘WAIT‘) THEN lpad(tptformat(delta / CASE WHEN evcnt = 0 THEN 1 ELSE evcnt END, s2(b).stype), 10, ‘ ‘)||‘ average wait‘ ELSE get_useful_average(s2(b), s1(a)) END END ); end; /*--------------------------------------------------- -- lookup stat delta helper calculator (l2.value - l1.value) ---------------------------------------------------*/ function get_delta(metric_id in varchar2) return number is rec1 srec; rec2 srec; val1 number; val2 number; d number; begin begin val1 := l1(metric_id).value; exception when no_data_found then val1 := 0; end; begin val2 := l2(metric_id).value; exception when no_data_found then val2 := 0; end; d := val2 - NVL(val1, 0); return d; end get_delta; /*--------------------------------------------------- -- delta helper function for convenience - it allows to specify any metric delta, if not specified then get current one ---------------------------------------------------*/ function gd(c in srec, metric_type in varchar2 DEFAULT NULL, metric_name in varchar2 DEFAULT NULL) return number is str varchar2(1000); tmp_delta number; begin if metric_type || metric_name is null then str := c.stype||‘,‘||trim(to_char(c.inst_id))||‘,‘||trim(to_char(c.sid))||‘,‘||trim(to_char(c.statistic#,‘999999999999999999999999‘)); else begin str := trim(metric_type)||‘,‘||trim(to_char(c.inst_id))||‘,‘||trim(to_char(c.sid))||‘,‘||trim(to_char(sn_reverse(metric_type||‘,‘||metric_name).statistic#)); exception when no_data_found then return 0; end; end if; tmp_delta := get_delta(str); --output(‘tmp_delta ‘||c.stype||‘ ‘||tmp_delta); return tmp_delta; -- return get_delta(str); end; /*--------------------------------------------------- -- function for calculating useful averages and ratios between metrics -- it is totally OK to show ratios together with raw values they have been derived from ---------------------------------------------------*/ function get_useful_average(c in srec /* curr_metric */, p in srec /* all_prev_metrics */) return varchar2 is ret varchar2(1000); mt varchar2(100) := c.stype; -- metric_type mn varchar2(100) := sn(c.statistic#).name; -- metric_name begin case when mt = ‘STAT‘ then case when mn LIKE ‘session _ga memory%‘ then ret := lpad( tptformat(gd(c), ‘STAT‘), 10) || ‘ actual value in end of snapshot‘; when mn LIKE ‘%ed%cursors current‘ then ret := lpad( tptformat(gd(c), ‘STAT‘), 10) || ‘ actual value in end of snapshot‘; when mn = ‘file io service time‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘physical read total IO requests‘)+gd(c, ‘STAT‘, ‘physical write total IO requests‘),0), ‘TIME‘), 10) || ‘ bad guess of IO service time per IO request‘; when mn = ‘file io wait time‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘physical read total IO requests‘)+gd(c, ‘STAT‘, ‘physical write total IO requests‘),0), ‘TIME‘), 10) || ‘ bad guess of IO wait time per IO request‘; when mn = ‘redo synch time overhead (usec)‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘redo synch writes‘ ),0), ‘TIME‘), 10) || ‘ FG wakeup overhead per log file sync‘; when mn = ‘redo write time‘ then ret := lpad( tptformat(gd(c) * 10000 / nullif(gd(c, ‘STAT‘, ‘redo writes‘ ),0), ‘TIME‘), 10) || ‘ per redo write‘; when mn = ‘recursive calls‘ then ret := lpad( tptformat(gd(c, ‘STAT‘, ‘recursive cpu usage‘) * 10000 / nullif(gd(c), 0), ‘TIME‘), 10) || ‘ recursive CPU per recursive call‘; when mn = ‘recursive cpu usage‘ then ret := lpad( tptformat(gd(c) * 10000, ‘TIME‘), 10) || ‘ total recursive CPU usage‘; when mn = ‘parse time cpu‘ then ret := lpad( tptformat(gd(c) * 10000, ‘TIME‘), 10) || ‘ total parse time CPU‘; when mn = ‘parse time elapsed‘ then ret := lpad( tptformat(gd(c) * 10000, ‘TIME‘), 10) || ‘ total parse time elapsed‘; when mn = ‘CPU used when call started‘ then ret := lpad( tptformat(gd(c) * 10000, ‘TIME‘), 10) || ‘ total CPU used when call started‘; when mn = ‘CPU used by this session‘ then ret := lpad( tptformat(gd(c) * 10000, ‘TIME‘), 10) || ‘ total CPU used by this session‘; when mn = ‘DB Time‘ then ret := lpad( tptformat(gd(c) * 10000, ‘TIME‘), 10) || ‘ total DB Time‘; when mn = ‘physical write IO requests‘ then ret := lpad( tptformat(gd(c, ‘STAT‘, ‘physical write bytes‘) / nullif(gd(c),0), mt), 10) || ‘ bytes per request‘ ; when mn = ‘physical write total IO requests‘ then ret := lpad( tptformat(gd(c, ‘STAT‘, ‘physical write total bytes‘) / nullif(gd(c),0), mt), 10) || ‘ bytes per request‘ ; when mn = ‘physical write total multi block requests‘ then ret:= lpad( tptformat(gd(c, ‘STAT‘, ‘physical write total IO requests‘) - gd(c), mt), 10) || ‘ total single block write requests‘ ; when mn = ‘physical read total multi block requests‘ then ret := lpad( tptformat(gd(c, ‘STAT‘, ‘physical read total IO requests‘) - gd(c), mt), 10) || ‘ total single block read requests‘ ; when mn = ‘physical read IO requests‘ then ret := lpad( tptformat(gd(c, ‘STAT‘, ‘physical read bytes‘ ) / nullif(gd(c),0), mt), 10) || ‘ bytes per request‘ ; when mn = ‘physical read read IO requests‘ then ret := lpad( tptformat(gd(c, ‘STAT‘, ‘physical read total bytes‘ ) / nullif(gd(c),0), mt), 10) || ‘ bytes per request‘ ; when mn = ‘bytes sent via SQL*Net to client‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘SQL*Net roundtrips to/from client‘),0), mt), 10) || ‘ bytes per roundtrip‘ ; when mn = ‘bytes received via SQL*Net from client‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘SQL*Net roundtrips to/from client‘),0), mt), 10) || ‘ bytes per roundtrip‘ ; when mn = ‘bytes sent via SQL*Net to dblink‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘SQL*Net roundtrips to/from dblink‘),0), mt), 10) || ‘ bytes per roundtrip‘ ; when mn = ‘bytes received via SQL*Net from dblink‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘SQL*Net roundtrips to/from dblink‘),0), mt), 10) || ‘ bytes per roundtrip‘ ; when mn = ‘redo size‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘user commits‘ ),0), mt), 10) || ‘ bytes per user commit‘; when mn = ‘execute count‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘parse count (total)‘ ),0), mt), 10) || ‘ executions per parse‘; when mn = ‘parse count (total)‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘parse count (hard)‘ ),0), mt), 10) || ‘ softparses per hardparse‘; when mn = ‘session cursor cache hits‘ then ret := lpad( tptformat(gd(c) - (gd(c, ‘STAT‘, ‘parse count (total)‘ ) ), mt), 10) || ‘ softparses avoided thanks to cursor cache‘; when mn = ‘session logical reads‘ then ret := lpad( tptformat(gd(c) + (gd(c, ‘STAT‘, ‘buffer is pinned count‘ ) ), mt), 10) || ‘ total buffer visits‘; when mn = ‘buffer is pinned count‘ then ret := lpad( tptformat(gd(c) / nullif(gd(c) + gd(c, ‘STAT‘, ‘session logical reads‘),0) * 100, mt), 10) || ‘ % buffer gets avoided thanks to buffer pin caching‘; else ret := lpad( tptformat(gd(c) / nullif(gd(c, ‘STAT‘, ‘execute count‘),0), mt), 10) || ‘ per execution‘ ; end case; -- mt=stat, mn when mt = ‘TIME‘ then -- this is ugly and wrong at the moment - will refactor some day case when mn = ‘DB time‘ or mn= ‘background elapsed time‘ then ret := lpad(tptformat((get_seconds(d2 - d1)*1000000 - ( gd(c) /*+ gd(c, ‘DB CPU‘, ‘TIME‘) */ + gd(c, ‘WAIT‘, ‘pmon timer‘) + gd(c, ‘WAIT‘, ‘VKTM Logical Idle Wait‘) + gd(c, ‘WAIT‘, ‘VKTM Init Wait for GSGA‘) + gd(c, ‘WAIT‘, ‘IORM Scheduler Slave Idle Wait‘) + gd(c, ‘WAIT‘, ‘rdbms ipc message‘) + gd(c, ‘WAIT‘, ‘OFS idle‘) + gd(c, ‘WAIT‘, ‘i/o slave wait‘) + gd(c, ‘WAIT‘, ‘VKRM Idle‘) + gd(c, ‘WAIT‘, ‘wait for unread message on broadcast channel‘) + gd(c, ‘WAIT‘, ‘wait for unread message on multiple broadcast channels‘) + gd(c, ‘WAIT‘, ‘class slave wait‘) + gd(c, ‘WAIT‘, ‘PING‘) + gd(c, ‘WAIT‘, ‘watchdog main loop‘) + gd(c, ‘WAIT‘, ‘process in prespawned state‘) + gd(c, ‘WAIT‘, ‘DIAG idle wait‘) + gd(c, ‘WAIT‘, ‘ges remote message‘) + gd(c, ‘WAIT‘, ‘gcs remote message‘) + gd(c, ‘WAIT‘, ‘heartbeat monitor sleep‘) + gd(c, ‘WAIT‘, ‘GCR sleep‘) + gd(c, ‘WAIT‘, ‘SGA: MMAN sleep for component shrink‘) + gd(c, ‘WAIT‘, ‘MRP redo arrival‘) + gd(c, ‘WAIT‘, ‘LNS ASYNC archive log‘) + gd(c, ‘WAIT‘, ‘LNS ASYNC dest activation‘) + gd(c, ‘WAIT‘, ‘LNS ASYNC end of log‘) + gd(c, ‘WAIT‘, ‘simulated log write delay‘) + gd(c, ‘WAIT‘, ‘heartbeat redo informer‘) + gd(c, ‘WAIT‘, ‘LGWR real time apply sync‘) + gd(c, ‘WAIT‘, ‘LGWR worker group idle‘) + gd(c, ‘WAIT‘, ‘parallel recovery slave idle wait‘) + gd(c, ‘WAIT‘, ‘Backup Appliance waiting for work‘) + gd(c, ‘WAIT‘, ‘Backup Appliance waiting restore start‘) + gd(c, ‘WAIT‘, ‘Backup Appliance Surrogate wait‘) + gd(c, ‘WAIT‘, ‘Backup Appliance Servlet wait‘) + gd(c, ‘WAIT‘, ‘Backup Appliance Comm SGA setup wait‘) + gd(c, ‘WAIT‘, ‘LogMiner builder: idle‘) + gd(c, ‘WAIT‘, ‘LogMiner builder: branch‘) + gd(c, ‘WAIT‘, ‘LogMiner preparer: idle‘) + gd(c, ‘WAIT‘, ‘LogMiner reader: log (idle)‘) + gd(c, ‘WAIT‘, ‘LogMiner reader: redo (idle)‘) + gd(c, ‘WAIT‘, ‘LogMiner client: transaction‘) + gd(c, ‘WAIT‘, ‘LogMiner: other‘) + gd(c, ‘WAIT‘, ‘LogMiner: activate‘) + gd(c, ‘WAIT‘, ‘LogMiner: reset‘) + gd(c, ‘WAIT‘, ‘LogMiner: find session‘) + gd(c, ‘WAIT‘, ‘LogMiner: internal‘) + gd(c, ‘WAIT‘, ‘Logical Standby Apply Delay‘) + gd(c, ‘WAIT‘, ‘parallel recovery coordinator waits for slave cleanup‘) + gd(c, ‘WAIT‘, ‘parallel recovery coordinator idle wait‘) + gd(c, ‘WAIT‘, ‘parallel recovery control message reply‘) + gd(c, ‘WAIT‘, ‘parallel recovery slave next change‘) + gd(c, ‘WAIT‘, ‘recovery sender idle wait‘) + gd(c, ‘WAIT‘, ‘recovery receiver idle wait‘) + gd(c, ‘WAIT‘, ‘recovery merger idle wait ‘) + gd(c, ‘WAIT‘, ‘PX Deq: Txn Recovery Start‘) + gd(c, ‘WAIT‘, ‘PX Deq: Txn Recovery Reply‘) + gd(c, ‘WAIT‘, ‘fbar timer‘) + gd(c, ‘WAIT‘, ‘smon timer‘) + gd(c, ‘WAIT‘, ‘PX Deq: Metadata Update‘) + gd(c, ‘WAIT‘, ‘Space Manager: slave idle wait‘) + gd(c, ‘WAIT‘, ‘PX Deq: Index Merge Reply‘) + gd(c, ‘WAIT‘, ‘PX Deq: Index Merge Execute‘) + gd(c, ‘WAIT‘, ‘PX Deq: Index Merge Close‘) + gd(c, ‘WAIT‘, ‘PX Deq: kdcph_mai‘) + gd(c, ‘WAIT‘, ‘PX Deq: kdcphc_ack‘) + gd(c, ‘WAIT‘, ‘imco timer‘) + gd(c, ‘WAIT‘, ‘virtual circuit next request‘) + gd(c, ‘WAIT‘, ‘shared server idle wait‘) + gd(c, ‘WAIT‘, ‘dispatcher timer‘) + gd(c, ‘WAIT‘, ‘cmon timer‘) + gd(c, ‘WAIT‘, ‘pool server timer‘) + gd(c, ‘WAIT‘, ‘lreg timer‘) + gd(c, ‘WAIT‘, ‘JOX Jit Process Sleep‘) + gd(c, ‘WAIT‘, ‘jobq slave wait‘) + gd(c, ‘WAIT‘, ‘pipe get‘) + gd(c, ‘WAIT‘, ‘PX Deque wait‘) + gd(c, ‘WAIT‘, ‘PX Idle Wait‘) + gd(c, ‘WAIT‘, ‘PX Deq: Join ACK‘) + gd(c, ‘WAIT‘, ‘PX Deq Credit: need buffer‘) + gd(c, ‘WAIT‘, ‘PX Deq Credit: send blkd‘) + gd(c, ‘WAIT‘, ‘PX Deq: Msg Fragment‘) + gd(c, ‘WAIT‘, ‘PX Deq: Parse Reply‘) + gd(c, ‘WAIT‘, ‘PX Deq: Execute Reply‘) + gd(c, ‘WAIT‘, ‘PX Deq: Execution Msg‘) + gd(c, ‘WAIT‘, ‘PX Deq: Table Q Normal‘) + gd(c, ‘WAIT‘, ‘PX Deq: Table Q Sample‘) + gd(c, ‘WAIT‘, ‘REPL Apply: txns‘) + gd(c, ‘WAIT‘, ‘REPL Capture/Apply: messages‘) + gd(c, ‘WAIT‘, ‘REPL Capture: archive log‘) + gd(c, ‘WAIT‘, ‘single-task message‘) + gd(c, ‘WAIT‘, ‘SQL*Net message from client‘) + gd(c, ‘WAIT‘, ‘SQL*Net vector message from client‘) + gd(c, ‘WAIT‘, ‘SQL*Net vector message from dblink‘) + gd(c, ‘WAIT‘, ‘PL/SQL lock timer‘) + gd(c, ‘WAIT‘, ‘Streams AQ: emn coordinator idle wait‘) + gd(c, ‘WAIT‘, ‘EMON slave idle wait‘) + gd(c, ‘WAIT‘, ‘Emon coordinator main loop‘) + gd(c, ‘WAIT‘, ‘Emon slave main loop‘) + gd(c, ‘WAIT‘, ‘Streams AQ: waiting for messages in the queue‘) + gd(c, ‘WAIT‘, ‘Streams AQ: waiting for time management or cleanup tasks‘) + gd(c, ‘WAIT‘, ‘Streams AQ: delete acknowledged messages‘) + gd(c, ‘WAIT‘, ‘Streams AQ: deallocate messages from Streams Pool‘) + gd(c, ‘WAIT‘, ‘Streams AQ: qmn coordinator idle wait‘) + gd(c, ‘WAIT‘, ‘Streams AQ: qmn slave idle wait‘) + gd(c, ‘WAIT‘, ‘AQ: 12c message cache init wait‘) + gd(c, ‘WAIT‘, ‘AQ Cross Master idle‘) + gd(c, ‘WAIT‘, ‘AQPC idle‘) + gd(c, ‘WAIT‘, ‘Streams AQ: load balancer idle‘) + gd(c, ‘WAIT‘, ‘Sharded Queues : Part Maintenance idle‘) + gd(c, ‘WAIT‘, ‘REPL Capture/Apply: RAC AQ qmn coordinator‘) + gd(c, ‘WAIT‘, ‘HS message to agent‘) + gd(c, ‘WAIT‘, ‘ASM background timer‘) + gd(c, ‘WAIT‘, ‘iowp msg‘) + gd(c, ‘WAIT‘, ‘iowp file id‘) + gd(c, ‘WAIT‘, ‘netp network‘) + gd(c, ‘WAIT‘, ‘gopp msg‘) + gd(c, ‘WAIT‘, ‘auto-sqltune: wait graph update‘) + gd(c, ‘WAIT‘, ‘WCR: replay client notify‘) + gd(c, ‘WAIT‘, ‘WCR: replay clock‘) + gd(c, ‘WAIT‘, ‘WCR: replay paused‘) + gd(c, ‘WAIT‘, ‘JS external job‘) + gd(c, ‘WAIT‘, ‘cell worker idle‘) )) / (get_seconds(d2 - d1)*1000000) * 100 , ‘STAT‘), 10) || ‘ % unaccounted time‘ ; else null; end case; -- mt=time, mn else null; end case; -- mt return ret; end get_useful_average; /*--------------------------------------------------- -- function for converting large numbers to human-readable format ---------------------------------------------------*/ function tptformat( p_num in number, p_stype in varchar2 default ‘STAT‘, p_precision in number default 2, p_base in number default 10, -- for KiB/MiB formatting use p_grouplen in number default 3 -- p_base=2 and p_grouplen=10 ) return varchar2 is begin if p_num = 0 then return ‘0‘; end if; if p_num IS NULL then return ‘~‘; end if; if p_stype in (‘WAIT‘,‘TIME‘) then return round( p_num / power( p_base , trunc(log(p_base,abs(p_num)))-trunc(mod(log(p_base,abs(p_num)),p_grouplen)) ), p_precision ) || case trunc(log(p_base,abs(p_num)))-trunc(mod(log(p_base,abs(p_num)),p_grouplen)) when 0 then ‘us‘ when 1 then ‘us‘ when p_grouplen*1 then ‘ms‘ when p_grouplen*2 then ‘s‘ when p_grouplen*3 then ‘ks‘ when p_grouplen*4 then ‘Ms‘ else ‘*‘||p_base||‘^‘||to_char( trunc(log(p_base,abs(p_num)))-trunc(mod(log(p_base,abs(p_num)),p_grouplen)) )||‘ us‘ end; else return round( p_num / power( p_base , trunc(log(p_base,abs(p_num)))-trunc(mod(log(p_base,abs(p_num)),p_grouplen)) ), p_precision ) || case trunc(log(p_base,abs(p_num)))-trunc(mod(log(p_base,abs(p_num)),p_grouplen)) when 0 then ‘‘ when 1 then ‘‘ when p_grouplen*1 then ‘k‘ when p_grouplen*2 then ‘M‘ when p_grouplen*3 then ‘G‘ when p_grouplen*4 then ‘T‘ when p_grouplen*5 then ‘P‘ when p_grouplen*6 then ‘E‘ else ‘*‘||p_base||‘^‘||to_char( trunc(log(p_base,abs(p_num)))-trunc(mod(log(p_base,abs(p_num)),p_grouplen)) ) end; end if; end; -- tptformat /*--------------------------------------------------- -- simple function for parsing arguments from parameter string ---------------------------------------------------*/ function getopt( p_parvalues in varchar2, p_extract in varchar2, p_delim in varchar2 default ‘,‘ ) return varchar2 is ret varchar(1000) := NULL; begin -- dbms_output.put(‘p_parvalues = [‘||p_parvalues||‘] ‘ ); -- dbms_output.put(‘p_extract = [‘||p_extract||‘] ‘ ); if lower(p_parvalues) like lower(p_extract)||‘%‘ or lower(p_parvalues) like ‘%‘||p_delim||lower(p_extract)||‘%‘ then ret := nvl ( substr(p_parvalues, instr(p_parvalues, p_extract)+length(p_extract), case instr( substr(p_parvalues, instr(p_parvalues, p_extract)+length(p_extract) ) , p_delim ) when 0 then length(p_parvalues) else instr( substr(p_parvalues, instr(p_parvalues, p_extract)+length(p_extract) ) , p_delim ) - 1 end ) , chr(0) -- in case parameter was specified but with no value ); else ret := null; -- no parameter found end if; -- dbms_output.put_line(‘ret = [‘||replace(ret,chr(0),‘\0‘)||‘]‘); return ret; end; -- getopt /*--------------------------------------------------- -- proc for getting session list with username, osuser, machine etc ---------------------------------------------------*/ procedure get_sessions is tmp_sessions tmp_sestab; begin select /*+ unnest */ /* get_session_list:1 */ * bulk collect into tmp_sessions from gv$session s where 1=1 and ( &sid_filter ) ; g_sessions := g_empty_sessions; for i in 1..tmp_sessions.count loop g_sessions(tmp_sessions(i).inst_id||‘,‘||tmp_sessions(i).sid) := tmp_sessions(i); end loop; end; -- get_sessions /*--------------------------------------------------- -- function for getting session list with username, osuser, machine etc -- this func does not update the g_sessions global array but returns session info as return value ---------------------------------------------------*/ function get_sessions return sestab is tmp_sessions tmp_sestab; l_return_sessions sestab; begin select /*+ unnest */ /* get_session_list:2 */ * bulk collect into tmp_sessions from gv$session s where 1=1 and (&sid_filter) ; for i in 1..tmp_sessions.count loop --output(‘get_sessions i=‘||i||‘ sid=‘||tmp_sessions(i).sid); l_return_sessions(tmp_sessions(i).inst_id||‘,‘||tmp_sessions(i).sid) := tmp_sessions(i); end loop; return l_return_sessions; end; -- get_sessions /*--------------------------------------------------- -- functions for extracting and converting gv$session -- records to varchar2 ---------------------------------------------------*/ function sitem(p in varchar2) return varchar2 as begin return ‘<‘||translate(p, ‘<>‘, ‘__‘)||‘>‘; end; -- sitem varchar2 function sitem(p in number) return varchar2 as begin return ‘<‘||to_char(p)||‘>‘; end; -- sitem number function sitem(p in date) return varchar2 as begin return ‘<‘||to_char(p, ‘YYYY-MM-DD HH24:MI:SS‘)||‘>‘; end; -- sitem date function sitem_raw(p in raw) return varchar2 as begin return ‘<‘||upper(rawtohex(p))||‘>‘; end; -- sitem_raw /*--------------------------------------------------- -- proc for resetting the snapper ash array ---------------------------------------------------*/ procedure reset_ash is begin g_ash_samples_taken := 0; -- clear g_ash g_ash := new sys.dbms_debug_vc2coll(); end; -- reset_ash /*--------------------------------------------------- -- proc for getting ash style samples from gv$session ---------------------------------------------------*/ procedure extract_ash is ash_i varchar2(30); s gv$session%rowtype; begin -- keep track how many times we sampled gv$session so we could calculate averages later on g_ash_samples_taken := g_ash_samples_taken + 1; --output(‘g_sessions.count=‘||g_sessions.count); ash_i := g_sessions.first; while ash_i is not null loop s := g_sessions(ash_i); if -- active, on cpu (s.status = ‘ACTIVE‘ and s.state != ‘WAITING‘ and s.sid != g_mysid) or -- active, waiting for non-idle wait (s.status = ‘ACTIVE‘ and s.state = ‘WAITING‘ and s.wait_class != ‘Idle‘ and s.sid != g_mysid) then --output(‘extract_ash: i=‘||i||‘ sid=‘||s.sid||‘ hv=‘||s.sql_hash_value||‘ sqlid=‘||s.sql_id); -- if not actually waiting for anything, clear the past wait event details if s.state != ‘WAITING‘ then s.state:=‘ON CPU‘; s.event:=‘ON CPU‘; s.wait_class:=‘ON CPU‘; --TODO: What do we need to do for 9i here? s.p1:=NULL; s.p2:=NULL; s.p3:=NULL; end if; g_ash.extend; -- max length 1000 bytes (due to dbms_debug_vc2coll) g_ash(g_ash.count) := substr( sitem(s.inst_id) -- 1 ||sitem(s.sid) -- 2 ||sitem(s.username) -- 3 -- 30 bytes ||sitem(s.machine) -- 4 -- 64 bytes ||sitem(s.terminal) -- 5 -- 30 bytes ||sitem(s.program) -- 6 -- 48 bytes ||sitem(s.event) -- 7 -- 64 bytes ||sitem(s.wait_class) -- 8 -- 64 bytes, 10g+ ||sitem(s.state) -- 9 ||sitem(s.p1) -- 10 ||sitem(s.p2) -- 11 ||sitem(s.p3) -- 12 ||sitem(s.row_wait_obj#) -- 13 ||sitem(s.row_wait_file#) -- 14 ||sitem(s.row_wait_block#) -- 15 ||sitem(s.row_wait_row#) -- 16 ||sitem(s.blocking_session_status) -- 17 -- 10g+ &_NO_BLK_INST ||sitem(‘N/A‘) -- 17 -- 10gR2+ &_YES_BLK_INST ||sitem(s.blocking_instance) -- 18 -- 10gR2+ ||sitem(s.blocking_session) -- 19 -- 10g+ ||sitem(s.sql_hash_value) -- 20 ||sitem(s.sql_id) -- 21 -- 10g+ ||sitem(s.sql_child_number) -- 22 -- 10g+ &_NO_PLSQL_OBJ_ID ||sitem(‘N/A‘) -- 23 &_NO_PLSQL_OBJ_ID ||sitem(‘N/A‘) -- 24 &_NO_PLSQL_OBJ_ID ||sitem(‘N/A‘) -- 25 &_NO_PLSQL_OBJ_ID ||sitem(‘N/A‘) -- 26 &_YES_PLSQL_OBJ_ID ||sitem(s.plsql_entry_object_id) -- 23 &_YES_PLSQL_OBJ_ID ||sitem(s.plsql_entry_subprogram_id) -- 24 &_YES_PLSQL_OBJ_ID ||sitem(s.plsql_object_id) -- 25 &_YES_PLSQL_OBJ_ID ||sitem(s.plsql_subprogram_id) -- 26 ||sitem(s.module) -- 27 -- 48 bytes ||sitem(s.action) -- 28 -- 32 bytes ||sitem(s.client_identifier) -- 29 -- 64 bytes ||sitem(s.service_name) -- 30 -- 64 bytes, 10g+ &_IF_ORA12_OR_HIGHER ||sitem(s.con_id) -- 31 -- 12c+ &_IF_LOWER_THAN_ORA12 ||sitem(‘N/A‘) -- 31 , 1, 1000); end if; -- sample is of an active session ash_i := g_sessions.next(ash_i); end loop; exception when no_data_found then output(‘error in extract_ash(): no_data_found for item ‘||i); end; -- extract_ash /*--------------------------------------------------- -- proc for querying performance data into collections ---------------------------------------------------*/ procedure snap( p_snapdate out timestamp, p_stats out stab, l_stats out ltab, p_stats_string out sys.dbms_debug_vc2coll) is lv_include_stat varchar2(1000) := nvl( lower(getopt(‘&snapper_options‘, ‘sinclude=‘ )), ‘%‘); lv_include_latch varchar2(1000) := nvl( lower(getopt(‘&snapper_options‘, ‘linclude=‘ )), ‘%‘); lv_include_time varchar2(1000) := nvl( lower(getopt(‘&snapper_options‘, ‘tinclude=‘ )), ‘%‘); lv_include_wait varchar2(1000) := nvl( lower(getopt(‘&snapper_options‘, ‘winclude=‘ )), ‘%‘); lstr varchar2(1000); begin p_snapdate := systimestamp; select /* get_session_stats */ p_snapdate ts, snapper_stats.* bulk collect into p_stats from ( select ‘STAT‘ stype, s.inst_id, s.sid, ss.statistic# - pls_adjust statistic#, ss.value, null event_count from gv$session s, gv$sesstat ss where &sid_filter --(inst_id,sid) in (&snapper_sid) and s.inst_id = ss.inst_id and s.sid = ss.sid and (lv_gather like ‘%s%‘ or lv_gather like ‘%a%‘) and ss.statistic# in (select /*+ no_unnest */ statistic# from v$statname where lower(name) like ‘%‘||lv_include_stat||‘%‘ or regexp_like (name, lv_include_stat, ‘i‘) ) -- union all select ‘WAIT‘, s.inst_id, s.sid, en.event# + (select count(*) from v$statname) + 1 - pls_adjust, nvl(se.time_waited_micro,0) + ( decode(se.event||s.state, s.event||‘WAITING‘, CASE WHEN s.seconds_in_wait > 1300000000 THEN 0 ELSE s.seconds_in_wait END -- bug in v$session , 0) * 1000000 ) value, total_waits event_count from gv$session s, gv$session_event se, v$event_name en where &sid_filter and s.sid = se.sid and s.inst_id = se.inst_id and se.event = en.name --and (se.inst_id, se.sid) in (&snapper_sid) and (lv_gather like ‘%w%‘ or lv_gather like ‘%a%‘) and en.event# in (select event# from v$event_name where lower(name) like ‘%‘||lv_include_wait||‘%‘ or regexp_like (name, lv_include_wait, ‘i‘) ) -- union all select ‘TIME‘ stype, s.inst_id, s.sid, st.stat_id - pls_adjust statistic#, st.value, null event_count from gv$session s, gv$sess_time_model st where &sid_filter --(inst_id,sid) in (&snapper_sid) and s.inst_id = st.inst_id and s.sid = st.sid and (lv_gather like ‘%t%‘ or lv_gather like ‘%a%‘) and st.stat_id in (select stat_id from gv$sys_time_model where lower(stat_name) like ‘%‘||lv_include_time||‘%‘ or regexp_like (stat_name, lv_include_time, ‘i‘) ) -- union all select ‘LATG‘, s.inst_id, -1 sid, s.latch# + (select count(*) from v$statname) + (select count(*) from v$event_name) + 1 - pls_adjust statistic#, s.gets + s.immediate_gets value, null event_count from gv$latch s where &inst_filter and (lv_gather like ‘%l%‘ or lv_gather like ‘%a%‘) and latch# in (select latch# from v$latchname where lower(name) like ‘%‘||lv_include_latch||‘%‘ or regexp_like (name, lv_include_latch, ‘i‘) ) -- &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 union all &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 select ‘BUFG‘, to_number(sys_context(‘userenv‘, ‘instance‘)), -1 sid, &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 s.indx + &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 (select count(*) from v$statname) + &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 (select count(*) from v$event_name) + &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 (select count(*) from gv$latch) + &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 1 - pls_adjust statistic#, &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 s.why0+s.why1+s.why2 value, null event_count &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 from x$kcbsw s, x$kcbwh w &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 where &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 s.indx = w.indx &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 and s.why0+s.why1+s.why2 > 0 &_IF_X_ACCESSIBLE &_IF_LOWER_THAN_ORA11 and (lv_gather like ‘%b%‘ or lv_gather like ‘%a%‘) -- &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER union all &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER select ‘BUFG‘, to_number(sys_context(‘userenv‘, ‘instance‘)), -1 sid, &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER sw.indx + &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER (select count(*) from v$statname) + &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER (select count(*) from v$event_name) + &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER (select count(*) from gv$latch) + &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER 1 - pls_adjust statistic#, &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER why.why0+why.why1+why.why2+sw.other_wait value, null event_count &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER from &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER x$kcbuwhy why, &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER x$kcbwh dsc, &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER x$kcbsw sw &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER where &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER why.indx = dsc.indx &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER and why.inst_id = dsc.inst_id &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER and dsc.inst_id = sw.inst_id &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER and why.inst_id = sw.inst_id &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER and why.why0 + why.why1 + why.why2 + sw.other_wait > 0 &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER and dsc.indx = sw.indx &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER and why.indx = sw.indx &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER -- deliberate cartesian join &_IF_X_ACCESSIBLE &_IF_ORA11_OR_HIGHER and (lv_gather like ‘%b%‘ or lv_gather like ‘%a%‘) -- union all select ‘ENQG‘, s.inst_id, -1 sid, ascii(substr(s.eq_type,1,1))*256 + ascii(substr(s.eq_type,2,1)) + (select count(*) from v$statname) + (select count(*) from v$event_name) + (select count(*) from gv$latch) + &_IF_X_ACCESSIBLE (select count(*) from x$kcbwh) + 1 - pls_adjust statistic#, s.total_req# value, null event_count from gv$enqueue_stat s where &inst_filter and (lv_gather like ‘%e%‘ or lv_gather like ‘%a%‘) ) snapper_stats order by inst_id, sid, stype, statistic#; if p_stats.COUNT > 0 then -- l_stats is an associative array for stats lookup, used for the useful averages calculation -- p_stats_string is a dbms_debug_vc2coll collection datatype for "persisting" stats values across snapper DB calls (for "before" and "after" snaps) p_stats_string := sys.dbms_debug_vc2coll(); for s in p_stats.first..p_stats.last loop -- type srec is record (stype varchar2(4), sid number, statistic# number, value number, event_count number ); lstr := p_stats(s).stype||‘,‘||trim(to_char(p_stats(s).inst_id))||‘,‘||trim(to_char(p_stats(s).sid))||‘,‘||trim(to_char(p_stats(s).statistic#,‘999999999999999999999999‘)); l_stats(lstr) := p_stats(s); if g_snap_begin is not null then p_stats_string.extend(); p_stats_string(s) := TO_CHAR(p_stats(s).ts, ‘YYYY-MM-DD HH24:MI:SS.FF‘) ||‘,‘|| p_stats(s).stype ||‘,‘|| TO_CHAR(p_stats(s).inst_id) ||‘,‘|| TO_CHAR(p_stats(s).sid) ||‘,‘|| TRIM(TO_CHAR(p_stats(s).statistic#, ‘999999999999999999999999‘))||‘,‘|| TRIM(TO_CHAR(p_stats(s).value, ‘999999999999999999999999‘))||‘,‘|| TRIM(TO_CHAR(p_stats(s).event_count,‘999999999999999999999999‘)); --output(‘p_stats.p_stats_string=‘||p_stats_string(s)); end if; end loop; -- s in (p_stats) end if; -- p.stats.COUNT > 0 end snap; /*--------------------------------------------------- -- proc for reversing the string-normalized -- stats array into lookup tables/collections ---------------------------------------------------*/ procedure snap_from_stats_string (p_string_stats in sys.dbms_debug_vc2coll, p_snapdate out timestamp, p_stats out stab, l_stats out ltab) is lstr varchar2(1000); lv_rec srec; begin p_snapdate := NULL; --type srec is record (stype varchar2(4), sid number, statistic# number, value number, event_count number ); for s in p_string_stats.first .. p_string_stats.last loop lv_rec.ts := TO_TIMESTAMP(replace(regexp_substr(p_string_stats(s)||‘,‘, ‘(.*?),‘, 1, 1),‘,‘,‘‘), ‘YYYY-MM-DD HH24:MI:SS.FF‘); lv_rec.stype := replace(regexp_substr(p_string_stats(s)||‘,‘, ‘(.*?),‘, 1, 2),‘,‘,‘‘); lv_rec.inst_id := TO_NUMBER(replace(regexp_substr(p_string_stats(s)||‘,‘, ‘(.*?),‘, 1, 3),‘,‘,‘‘)); lv_rec.sid := TO_NUMBER(replace(regexp_substr(p_string_stats(s)||‘,‘, ‘(.*?),‘, 1, 4),‘,‘,‘‘)); lv_rec.statistic# := TO_NUMBER(replace(regexp_substr(p_string_stats(s)||‘,‘, ‘(.*?),‘, 1, 5),‘,‘,‘‘)); lv_rec.value := TO_NUMBER(replace(regexp_substr(p_string_stats(s)||‘,‘, ‘(.*?),‘, 1, 6),‘,‘,‘‘)); lv_rec.event_count := TO_NUMBER(replace(regexp_substr(p_string_stats(s)||‘,‘, ‘(.*?),‘, 1, 7),‘,‘,‘‘)); --output(‘snap_from_stats_string.event_count = ‘||to_char(lv_rec.event_count)); p_stats(s) := lv_rec; lstr := p_stats(s).stype||‘,‘||trim(to_char(p_stats(s).inst_id))||‘,‘||trim(to_char(p_stats(s).sid))||‘,‘||trim(to_char(p_stats(s).statistic#,‘999999999999999999999999‘)); l_stats(lstr) := p_stats(s); end loop; p_snapdate := lv_rec.ts; end snap_from_stats_string; /*--------------------------------------------------- -- proc for dumping ASH data out in grouped -- and ordered fashion ---------------------------------------------------*/ procedure out_ash( p_ash_columns in varchar2, p_topn in number := 10 ) as -- whether to print given column or not p_inst_id number := 0; p_sid number := 0; p_username number := 0; p_machine number := 0; p_terminal number := 0; p_program number := 0; p_event number := 0; p_wait_class number := 0; p_state number := 0; p_p1 number := 0; p_p2 number := 0; p_p3 number := 0; p_row_wait_obj# number := 0; p_row_wait_file# number := 0; p_row_wait_block# number := 0; p_row_wait_row# number := 0; p_blocking_session_status number := 0; p_blocking_instance number := 0; p_blocking_session number := 0; p_sql_hash_value number := 0; p_sql_id number := 0; p_sql_child_number number := 0; p_plsql_entry_object_id number := 0; p_plsql_entry_subprogram_id number := 0; p_plsql_object_id number := 0; p_plsql_subprogram_id number := 0; p_module number := 0; p_action number := 0; p_client_identifier number := 0; p_service_name number := 0; p_con_id number := 0; -- temporary variables for holding session details (for later formatting) o_inst_id varchar2(100); o_sid varchar2(100); o_username varchar2(100); o_machine varchar2(100); o_terminal varchar2(100); o_program varchar2(100); o_event varchar2(100); o_wait_class varchar2(100); o_state varchar2(100); o_p1 varchar2(100); o_p2 varchar2(100); o_p3 varchar2(100); o_row_wait_obj# varchar2(100); o_row_wait_file# varchar2(100); o_row_wait_block# varchar2(100); o_row_wait_row# varchar2(100); o_blocking_session_status varchar2(100); o_blocking_instance varchar2(100); o_blocking_session varchar2(100); o_sql_hash_value varchar2(100); o_sql_id varchar2(100); o_sql_child_number varchar2(100); o_plsql_entry_object_id varchar2(100); o_plsql_entry_subprogram_id varchar2(100); o_plsql_object_id varchar2(100); o_plsql_subprogram_id varchar2(100); o_module varchar2(100); o_action varchar2(100); o_client_identifier varchar2(100); o_service_name varchar2(100); o_con_id varchar2(100); -- helper local vars l_ash_grouping number := 0; l_output_line varchar2(4000); l_ash_header_line varchar2(4000); begin -- bail out if no ASH samples recorded if g_ash.count = 0 then output(‘ <No active sessions captured during the sampling period>‘); return; end if; l_ash_header_line := ‘‘; if output_actses = 1 then l_ash_header_line := l_ash_header_line || ‘ ActSes‘; end if; if output_actses_pct = 1 then l_ash_header_line := l_ash_header_line || ‘ %Thread‘; end if; -- ash,ash1,ash2,ash3,ash4,ash5,ash6 parameter column group tokenizer for s in ( SELECT LEVEL , SUBSTR ( TOKEN , DECODE(LEVEL, 1, 1, INSTR(TOKEN, DELIMITER, 1, LEVEL-1)+1) , INSTR(TOKEN, DELIMITER, 1, LEVEL) - DECODE(LEVEL, 1, 1, INSTR(TOKEN, DELIMITER, 1, LEVEL-1)+1) ) TOKEN FROM ( SELECT REPLACE( LOWER(p_ash_columns) ,‘ ‘,‘‘)||‘+‘ AS TOKEN , ‘+‘ AS DELIMITER FROM DUAL ) CONNECT BY INSTR(TOKEN, DELIMITER, 1, LEVEL)>0 ORDER BY LEVEL ASC ) loop -- supported ASH column names case s.token -- actual column names in gv$session when ‘inst_id‘ then l_ash_grouping := l_ash_grouping + c_inst_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || lpad(‘INST_ID‘ , w_inst_id , ‘ ‘); when ‘con_id‘ then l_ash_grouping := l_ash_grouping + c_con_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || lpad(‘CON_ID‘ , w_con_id , ‘ ‘); when ‘sid‘ then l_ash_grouping := l_ash_grouping + c_sid ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || lpad(‘SID‘ , w_sid , ‘ ‘); when ‘username‘ then l_ash_grouping := l_ash_grouping + c_username ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘USERNAME‘ , w_username , ‘ ‘); when ‘machine‘ then l_ash_grouping := l_ash_grouping + c_machine ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘MACHINE‘ , w_machine , ‘ ‘); when ‘terminal‘ then l_ash_grouping := l_ash_grouping + c_terminal ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘TERMINAL‘ , w_terminal , ‘ ‘); when ‘program‘ then l_ash_grouping := l_ash_grouping + c_program ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PROGRAM‘ , w_program , ‘ ‘); when ‘event‘ then l_ash_grouping := l_ash_grouping + c_event ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘EVENT‘ , w_event , ‘ ‘); when ‘wait_class‘ then l_ash_grouping := l_ash_grouping + c_wait_class ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘WAIT_CLASS‘ , w_wait_class , ‘ ‘); when ‘state‘ then l_ash_grouping := l_ash_grouping + c_state ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘STATE‘ , w_state , ‘ ‘); when ‘p1‘ then l_ash_grouping := l_ash_grouping + c_p1 ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘P1‘ , w_p1 , ‘ ‘); when ‘p2‘ then l_ash_grouping := l_ash_grouping + c_p2 ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘P2‘ , w_p2 , ‘ ‘); when ‘p3‘ then l_ash_grouping := l_ash_grouping + c_p3 ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘P3‘ , w_p3 , ‘ ‘); when ‘row_wait_obj#‘ then l_ash_grouping := l_ash_grouping + c_row_wait_obj# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_OBJ#‘ , w_row_wait_obj# , ‘ ‘); when ‘row_wait_file#‘ then l_ash_grouping := l_ash_grouping + c_row_wait_file# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_FILE#‘ , w_row_wait_file# , ‘ ‘); when ‘row_wait_block#‘ then l_ash_grouping := l_ash_grouping + c_row_wait_block# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_BLOCK#‘ , w_row_wait_block# , ‘ ‘); when ‘row_wait_row#‘ then l_ash_grouping := l_ash_grouping + c_row_wait_row# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_ROW#‘ , w_row_wait_row# , ‘ ‘); when ‘blocking_session_status‘ then l_ash_grouping := l_ash_grouping + c_blocking_session_status ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘BLOCKING_SESSION_STATUS‘ , w_blocking_session_status , ‘ ‘); when ‘blocking_instance‘ then l_ash_grouping := l_ash_grouping + c_blocking_instance ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘BLOCKING_INSTANCE‘ , w_blocking_instance , ‘ ‘); when ‘blocking_session‘ then l_ash_grouping := l_ash_grouping + c_blocking_session ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘BLOCKING_SESSION‘ , w_blocking_session , ‘ ‘); when ‘sql_hash_value‘ then l_ash_grouping := l_ash_grouping + c_sql_hash_value ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SQL_HASH_VALUE‘ , w_sql_hash_value , ‘ ‘); when ‘sql_id‘ then l_ash_grouping := l_ash_grouping + c_sql_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SQL_ID‘ , w_sql_id , ‘ ‘); when ‘sql_child_number‘ then l_ash_grouping := l_ash_grouping + c_sql_child_number ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SQL_CHILD_NUMBER‘ , w_sql_child_number , ‘ ‘); when ‘plsql_entry_object_id‘ then l_ash_grouping := l_ash_grouping + c_plsql_entry_object_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_ENTRY_OBJECT_ID‘ , w_plsql_entry_object_id , ‘ ‘); when ‘plsql_entry_subprogram_id‘ then l_ash_grouping := l_ash_grouping + c_plsql_entry_subprogram_id; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_ENTRY_SUBPROGRAM_ID‘ , w_plsql_entry_subprogram_id, ‘ ‘); when ‘plsql_object_id‘ then l_ash_grouping := l_ash_grouping + c_plsql_object_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_OBJECT_ID‘ , w_plsql_object_id , ‘ ‘); when ‘plsql_subprogram_id‘ then l_ash_grouping := l_ash_grouping + c_plsql_subprogram_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_SUBPROGRAM_ID‘ , w_plsql_subprogram_id , ‘ ‘); when ‘module‘ then l_ash_grouping := l_ash_grouping + c_module ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘MODULE‘ , w_module , ‘ ‘); when ‘action‘ then l_ash_grouping := l_ash_grouping + c_action ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ACTION‘ , w_action , ‘ ‘); when ‘client_identifier‘ then l_ash_grouping := l_ash_grouping + c_client_identifier ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘CLIENT_IDENTIFIER‘ , w_client_identifier , ‘ ‘); when ‘service_name‘ then l_ash_grouping := l_ash_grouping + c_service_name ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SERVICE_NAME‘ , w_service_name , ‘ ‘); -- aliases for convenience (only either real name or alias should be used together at the same time) when ‘user‘ then l_ash_grouping := l_ash_grouping + c_username ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘USERNAME‘ , w_username , ‘ ‘); when ‘obj‘ then l_ash_grouping := l_ash_grouping + c_row_wait_obj# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_OBJ#‘ , w_row_wait_obj# , ‘ ‘); when ‘file‘ then l_ash_grouping := l_ash_grouping + c_row_wait_file# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_FILE#‘ , w_row_wait_file# , ‘ ‘); when ‘block‘ then l_ash_grouping := l_ash_grouping + c_row_wait_block# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_BLOCK#‘ , w_row_wait_block# , ‘ ‘); when ‘row‘ then l_ash_grouping := l_ash_grouping + c_row_wait_row# ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ROW_WAIT_ROW#‘ , w_row_wait_row# , ‘ ‘); when ‘bss‘ then l_ash_grouping := l_ash_grouping + c_blocking_session_status ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘BLOCKING_SESSION_STATUS‘ , w_blocking_session_status , ‘ ‘); when ‘bsi‘ then l_ash_grouping := l_ash_grouping + c_blocking_instance ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘BLOCKING_INSTANCE‘ , w_blocking_instance , ‘ ‘); when ‘bs‘ then l_ash_grouping := l_ash_grouping + c_blocking_session ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘BLOCKING_SESSION‘ , w_blocking_session , ‘ ‘); when ‘sql‘ then l_ash_grouping := l_ash_grouping + c_sql_hash_value ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SQL_HASH_VALUE‘ , w_sql_hash_value , ‘ ‘); when ‘sqlid‘ then l_ash_grouping := l_ash_grouping + c_sql_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SQL_ID‘ , w_sql_id , ‘ ‘); when ‘child‘ then l_ash_grouping := l_ash_grouping + c_sql_child_number ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SQL_CHILD_NUMBER‘ , w_sql_child_number , ‘ ‘); when ‘plsql_eoid‘ then l_ash_grouping := l_ash_grouping + c_plsql_entry_object_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_ENTRY_OBJECT_ID‘ , w_plsql_entry_object_id , ‘ ‘); when ‘plsql_esubpid‘ then l_ash_grouping := l_ash_grouping + c_plsql_entry_subprogram_id; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_ENTRY_SUBPROGRAM_ID‘ , w_plsql_entry_subprogram_id, ‘ ‘); when ‘plsql_oid‘ then l_ash_grouping := l_ash_grouping + c_plsql_object_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_OBJECT_ID‘ , w_plsql_object_id , ‘ ‘); when ‘plsql_subpid‘ then l_ash_grouping := l_ash_grouping + c_plsql_subprogram_id ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘PLSQL_SUBPROGRAM_ID‘ , w_plsql_subprogram_id , ‘ ‘); when ‘mod‘ then l_ash_grouping := l_ash_grouping + c_module ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘MODULE‘ , w_module , ‘ ‘); when ‘act‘ then l_ash_grouping := l_ash_grouping + c_action ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘ACTION‘ , w_action , ‘ ‘); when ‘cid‘ then l_ash_grouping := l_ash_grouping + c_client_identifier ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘CLIENT_IDENTIFIER‘ , w_client_identifier , ‘ ‘); when ‘service‘ then l_ash_grouping := l_ash_grouping + c_service_name ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘SERVICE_NAME‘ , w_service_name , ‘ ‘); when ‘wait_event‘ then l_ash_grouping := l_ash_grouping + c_event ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘EVENT‘ , w_event , ‘ ‘); when ‘wait_state‘ then l_ash_grouping := l_ash_grouping + c_state ; l_ash_header_line := l_ash_header_line || ‘ | ‘ || rpad(‘STATE‘ , w_state , ‘ ‘); else null; raise_application_error(-20001, ‘Snapper: Invalid ASH column name, search for "ASH column name"‘||chr(10)||‘in snapper.sql script to see supported column names.‘||chr(10)||sqlerrm); end case; -- case s.token end loop; -- tokenizer output(‘ ‘); output(lpad(‘-‘,length(l_ash_header_line),‘-‘)); output(l_ash_header_line); output(lpad(‘-‘,length(l_ash_header_line),‘-‘)); -- this is needed for "easy" sorting and group by ops (without any custom stored object types!) for i in ( with /* get_aggregates_from_ash */ raw_records as ( select column_value rec from table(cast(g_ash as sys.dbms_debug_vc2coll)) ), ash_records as ( select substr(r.rec, instr(r.rec, ‘<‘, 1, 1)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 1)+1), ‘>‘)-1) inst_id , substr(r.rec, instr(r.rec, ‘<‘, 1, 2)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 2)+1), ‘>‘)-1) sid , substr(r.rec, instr(r.rec, ‘<‘, 1, 3)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 3)+1), ‘>‘)-1) username , substr(r.rec, instr(r.rec, ‘<‘, 1, 4)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 4)+1), ‘>‘)-1) machine , substr(r.rec, instr(r.rec, ‘<‘, 1, 5)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 5)+1), ‘>‘)-1) terminal , substr(r.rec, instr(r.rec, ‘<‘, 1, 6)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 6)+1), ‘>‘)-1) program , substr(r.rec, instr(r.rec, ‘<‘, 1, 7)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 7)+1), ‘>‘)-1) event , substr(r.rec, instr(r.rec, ‘<‘, 1, 8)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 8)+1), ‘>‘)-1) wait_class , substr(r.rec, instr(r.rec, ‘<‘, 1, 9)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 9)+1), ‘>‘)-1) state , substr(r.rec, instr(r.rec, ‘<‘, 1, 10)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 10)+1), ‘>‘)-1) p1 , substr(r.rec, instr(r.rec, ‘<‘, 1, 11)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 11)+1), ‘>‘)-1) p2 , substr(r.rec, instr(r.rec, ‘<‘, 1, 12)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 12)+1), ‘>‘)-1) p3 , substr(r.rec, instr(r.rec, ‘<‘, 1, 13)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 13)+1), ‘>‘)-1) row_wait_obj# , substr(r.rec, instr(r.rec, ‘<‘, 1, 14)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 14)+1), ‘>‘)-1) row_wait_file# , substr(r.rec, instr(r.rec, ‘<‘, 1, 15)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 15)+1), ‘>‘)-1) row_wait_block# , substr(r.rec, instr(r.rec, ‘<‘, 1, 16)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 16)+1), ‘>‘)-1) row_wait_row# , substr(r.rec, instr(r.rec, ‘<‘, 1, 17)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 17)+1), ‘>‘)-1) blocking_session_status , substr(r.rec, instr(r.rec, ‘<‘, 1, 18)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 18)+1), ‘>‘)-1) blocking_instance , substr(r.rec, instr(r.rec, ‘<‘, 1, 19)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 19)+1), ‘>‘)-1) blocking_session , substr(r.rec, instr(r.rec, ‘<‘, 1, 20)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 20)+1), ‘>‘)-1) sql_hash_value , substr(r.rec, instr(r.rec, ‘<‘, 1, 21)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 21)+1), ‘>‘)-1) sql_id , substr(r.rec, instr(r.rec, ‘<‘, 1, 22)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 22)+1), ‘>‘)-1) sql_child_number , substr(r.rec, instr(r.rec, ‘<‘, 1, 23)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 23)+1), ‘>‘)-1) plsql_entry_object_id , substr(r.rec, instr(r.rec, ‘<‘, 1, 24)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 24)+1), ‘>‘)-1) plsql_entry_subprogram_id , substr(r.rec, instr(r.rec, ‘<‘, 1, 25)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 25)+1), ‘>‘)-1) plsql_object_id , substr(r.rec, instr(r.rec, ‘<‘, 1, 26)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 26)+1), ‘>‘)-1) plsql_subprogram_id , substr(r.rec, instr(r.rec, ‘<‘, 1, 27)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 27)+1), ‘>‘)-1) module , substr(r.rec, instr(r.rec, ‘<‘, 1, 28)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 28)+1), ‘>‘)-1) action , substr(r.rec, instr(r.rec, ‘<‘, 1, 29)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 29)+1), ‘>‘)-1) client_identifier , substr(r.rec, instr(r.rec, ‘<‘, 1, 30)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 30)+1), ‘>‘)-1) service_name , substr(r.rec, instr(r.rec, ‘<‘, 1, 31)+1, instr (substr(r.rec, instr(r.rec, ‘<‘, 1, 31)+1), ‘>‘)-1) con_id from raw_records r ) select * from ( select decode(bitand(l_ash_grouping, power(2, s_inst_id )), 0, chr(0), inst_id ) as inst_id , decode(bitand(l_ash_grouping, power(2, s_sid )), 0, chr(0), sid ) as sid , decode(bitand(l_ash_grouping, power(2, s_username )), 0, chr(0), username ) as username , decode(bitand(l_ash_grouping, power(2, s_machine )), 0, chr(0), machine ) as machine , decode(bitand(l_ash_grouping, power(2, s_terminal )), 0, chr(0), terminal ) as terminal , decode(bitand(l_ash_grouping, power(2, s_program )), 0, chr(0), program ) as program , decode(bitand(l_ash_grouping, power(2, s_event )), 0, chr(0), event ) as event , decode(bitand(l_ash_grouping, power(2, s_wait_class )), 0, chr(0), wait_class ) as wait_class , decode(bitand(l_ash_grouping, power(2, s_state )), 0, chr(0), state ) as state , decode(bitand(l_ash_grouping, power(2, s_p1 )), 0, chr(0), p1 ) as p1 , decode(bitand(l_ash_grouping, power(2, s_p2 )), 0, chr(0), p2 ) as p2 , decode(bitand(l_ash_grouping, power(2, s_p3 )), 0, chr(0), p3 ) as p3 , decode(bitand(l_ash_grouping, power(2, s_row_wait_obj# )), 0, chr(0), row_wait_obj# ) as row_wait_obj# , decode(bitand(l_ash_grouping, power(2, s_row_wait_file# )), 0, chr(0), row_wait_file# ) as row_wait_file# , decode(bitand(l_ash_grouping, power(2, s_row_wait_block# )), 0, chr(0), row_wait_block# ) as row_wait_block# , decode(bitand(l_ash_grouping, power(2, s_row_wait_row# )), 0, chr(0), row_wait_row# ) as row_wait_row# , decode(bitand(l_ash_grouping, power(2, s_blocking_session_status )), 0, chr(0), blocking_session_status ) as blocking_session_status , decode(bitand(l_ash_grouping, power(2, s_blocking_instance )), 0, chr(0), blocking_instance ) as blocking_instance , decode(bitand(l_ash_grouping, power(2, s_blocking_session )), 0, chr(0), blocking_session ) as blocking_session , decode(bitand(l_ash_grouping, power(2, s_sql_hash_value )), 0, chr(0), sql_hash_value ) as sql_hash_value , decode(bitand(l_ash_grouping, power(2, s_sql_id )), 0, chr(0), sql_id ) as sql_id , decode(bitand(l_ash_grouping, power(2, s_sql_child_number )), 0, chr(0), sql_child_number ) as sql_child_number , decode(bitand(l_ash_grouping, power(2, s_plsql_entry_object_id )), 0, chr(0), plsql_entry_object_id ) as plsql_entry_object_id , decode(bitand(l_ash_grouping, power(2, s_plsql_entry_subprogram_id )), 0, chr(0), plsql_entry_subprogram_id ) as plsql_entry_subprogram_id , decode(bitand(l_ash_grouping, power(2, s_plsql_object_id )), 0, chr(0), plsql_object_id ) as plsql_object_id , decode(bitand(l_ash_grouping, power(2, s_plsql_subprogram_id )), 0, chr(0), plsql_subprogram_id ) as plsql_subprogram_id , decode(bitand(l_ash_grouping, power(2, s_module )), 0, chr(0), module ) as module , decode(bitand(l_ash_grouping, power(2, s_action )), 0, chr(0), action ) as action , decode(bitand(l_ash_grouping, power(2, s_client_identifier )), 0, chr(0), client_identifier ) as client_identifier , decode(bitand(l_ash_grouping, power(2, s_service_name )), 0, chr(0), service_name ) as service_name , decode(bitand(l_ash_grouping, power(2, s_con_id )), 0, chr(0), con_id ) as con_id , count(*)/g_ash_samples_taken average_active_samples from ash_records a group by decode(bitand(l_ash_grouping, power(2, s_inst_id )), 0, chr(0), inst_id ) -- inst_id , decode(bitand(l_ash_grouping, power(2, s_sid )), 0, chr(0), sid ) -- sid , decode(bitand(l_ash_grouping, power(2, s_username )), 0, chr(0), username ) -- username , decode(bitand(l_ash_grouping, power(2, s_machine )), 0, chr(0), machine ) -- machine , decode(bitand(l_ash_grouping, power(2, s_terminal )), 0, chr(0), terminal ) -- terminal , decode(bitand(l_ash_grouping, power(2, s_program )), 0, chr(0), program ) -- program , decode(bitand(l_ash_grouping, power(2, s_event )), 0, chr(0), event ) -- event , decode(bitand(l_ash_grouping, power(2, s_wait_class )), 0, chr(0), wait_class ) -- wait_class , decode(bitand(l_ash_grouping, power(2, s_state )), 0, chr(0), state ) -- state , decode(bitand(l_ash_grouping, power(2, s_p1 )), 0, chr(0), p1 ) -- p1 , decode(bitand(l_ash_grouping, power(2, s_p2 )), 0, chr(0), p2 ) -- p2 , decode(bitand(l_ash_grouping, power(2, s_p3 )), 0, chr(0), p3 ) -- p3 , decode(bitand(l_ash_grouping, power(2, s_row_wait_obj# )), 0, chr(0), row_wait_obj# ) -- row_wait_obj# , decode(bitand(l_ash_grouping, power(2, s_row_wait_file# )), 0, chr(0), row_wait_file# ) -- row_wait_file# , decode(bitand(l_ash_grouping, power(2, s_row_wait_block# )), 0, chr(0), row_wait_block# ) -- row_wait_block# , decode(bitand(l_ash_grouping, power(2, s_row_wait_row# )), 0, chr(0), row_wait_row# ) -- row_wait_row# , decode(bitand(l_ash_grouping, power(2, s_blocking_session_status )), 0, chr(0), blocking_session_status ) -- blocking_session_status , decode(bitand(l_ash_grouping, power(2, s_blocking_instance )), 0, chr(0), blocking_instance ) -- blocking_instance , decode(bitand(l_ash_grouping, power(2, s_blocking_session )), 0, chr(0), blocking_session ) -- blocking_session , decode(bitand(l_ash_grouping, power(2, s_sql_hash_value )), 0, chr(0), sql_hash_value ) -- sql_hash_value , decode(bitand(l_ash_grouping, power(2, s_sql_id )), 0, chr(0), sql_id ) -- sql_id , decode(bitand(l_ash_grouping, power(2, s_sql_child_number )), 0, chr(0), sql_child_number ) -- sql_child_number , decode(bitand(l_ash_grouping, power(2, s_plsql_entry_object_id )), 0, chr(0), plsql_entry_object_id ) -- plsql_entry_object_id , decode(bitand(l_ash_grouping, power(2, s_plsql_entry_subprogram_id )), 0, chr(0), plsql_entry_subprogram_id ) -- plsql_entry_subprogram_id , decode(bitand(l_ash_grouping, power(2, s_plsql_object_id )), 0, chr(0), plsql_object_id ) -- plsql_object_id , decode(bitand(l_ash_grouping, power(2, s_plsql_subprogram_id )), 0, chr(0), plsql_subprogram_id ) -- plsql_subprogram_id , decode(bitand(l_ash_grouping, power(2, s_module )), 0, chr(0), module ) -- module , decode(bitand(l_ash_grouping, power(2, s_action )), 0, chr(0), action ) -- action , decode(bitand(l_ash_grouping, power(2, s_client_identifier )), 0, chr(0), client_identifier ) -- client_identifier , decode(bitand(l_ash_grouping, power(2, s_service_name )), 0, chr(0), service_name ) -- service_name , decode(bitand(l_ash_grouping, power(2, s_con_id )), 0, chr(0), con_id ) -- con_id order by count(*)/g_ash_samples_taken desc ) where rownum <= p_topn ) loop l_output_line := ‘‘; o_inst_id := CASE WHEN i.inst_id = chr(0) THEN null ELSE nvl(i.inst_id , ‘ ‘) END; o_sid := CASE WHEN i.sid = chr(0) THEN null ELSE nvl(i.sid , ‘ ‘) END; o_username := CASE WHEN i.username = chr(0) THEN null ELSE nvl(i.username , ‘ ‘) END; o_machine := CASE WHEN i.machine = chr(0) THEN null ELSE nvl(i.machine , ‘ ‘) END; o_terminal := CASE WHEN i.terminal = chr(0) THEN null ELSE nvl(i.terminal , ‘ ‘) END; o_program := CASE WHEN i.program = chr(0) THEN null ELSE nvl(i.program , ‘ ‘) END; o_event := CASE WHEN i.event = chr(0) THEN null ELSE nvl(i.event , ‘ ‘) END; o_wait_class := CASE WHEN i.wait_class = chr(0) THEN null ELSE nvl(i.wait_class , ‘ ‘) END; o_state := CASE WHEN i.state = chr(0) THEN null ELSE nvl(i.state , ‘ ‘) END; o_p1 := CASE WHEN i.p1 = chr(0) THEN null ELSE nvl(i.p1 , ‘ ‘) END; o_p2 := CASE WHEN i.p2 = chr(0) THEN null ELSE nvl(i.p2 , ‘ ‘) END; o_p3 := CASE WHEN i.p3 = chr(0) THEN null ELSE nvl(i.p3 , ‘ ‘) END; o_row_wait_obj# := CASE WHEN i.row_wait_obj# = chr(0) THEN null ELSE nvl(i.row_wait_obj# , ‘ ‘) END; o_row_wait_file# := CASE WHEN i.row_wait_file# = chr(0) THEN null ELSE nvl(i.row_wait_file# , ‘ ‘) END; o_row_wait_block# := CASE WHEN i.row_wait_block# = chr(0) THEN null ELSE nvl(i.row_wait_block# , ‘ ‘) END; o_row_wait_row# := CASE WHEN i.row_wait_row# = chr(0) THEN null ELSE nvl(i.row_wait_row# , ‘ ‘) END; o_blocking_session_status := CASE WHEN i.blocking_session_status = chr(0) THEN null ELSE nvl(i.blocking_session_status , ‘ ‘) END; o_blocking_instance := CASE WHEN i.blocking_instance = chr(0) THEN null ELSE nvl(i.blocking_instance , ‘ ‘) END; o_blocking_session := CASE WHEN i.blocking_session = chr(0) THEN null ELSE nvl(i.blocking_session , ‘ ‘) END; o_sql_hash_value := CASE WHEN i.sql_hash_value = chr(0) THEN null ELSE nvl(i.sql_hash_value , ‘ ‘) END; o_sql_id := CASE WHEN i.sql_id = chr(0) THEN null ELSE nvl(i.sql_id , ‘ ‘) END; o_sql_child_number := CASE WHEN i.sql_child_number = chr(0) THEN null ELSE nvl(i.sql_child_number , ‘ ‘) END; o_plsql_entry_object_id := CASE WHEN i.plsql_entry_object_id = chr(0) THEN null ELSE nvl(i.plsql_entry_object_id , ‘ ‘) END; o_plsql_entry_subprogram_id := CASE WHEN i.plsql_entry_subprogram_id = chr(0) THEN null ELSE nvl(i.plsql_entry_subprogram_id , ‘ ‘) END; o_plsql_object_id := CASE WHEN i.plsql_object_id = chr(0) THEN null ELSE nvl(i.plsql_object_id , ‘ ‘) END; o_plsql_subprogram_id := CASE WHEN i.plsql_subprogram_id = chr(0) THEN null ELSE nvl(i.plsql_subprogram_id , ‘ ‘) END; o_module := CASE WHEN i.module = chr(0) THEN null ELSE nvl(i.module , ‘ ‘) END; o_action := CASE WHEN i.action = chr(0) THEN null ELSE nvl(i.action , ‘ ‘) END; o_client_identifier := CASE WHEN i.client_identifier = chr(0) THEN null ELSE nvl(i.client_identifier , ‘ ‘) END; o_service_name := CASE WHEN i.service_name = chr(0) THEN null ELSE nvl(i.service_name , ‘ ‘) END; o_con_id := CASE WHEN i.con_id = chr(0) THEN null ELSE nvl(i.con_id , ‘ ‘) END; -- print the AAS and activity % as the first columns l_output_line := ‘‘; if output_actses = 1 then l_output_line := l_output_line || lpad(to_char(round(i.average_active_samples,2),‘9999.99‘), w_actses, ‘ ‘); end if; if output_actses_pct = 1 then l_output_line := l_output_line || lpad(‘(‘||to_char(round(i.average_active_samples*100))||‘%)‘, w_actses_pct, ‘ ‘); end if; -- loop through ash columns to find what to print and in which order for s in ( SELECT LEVEL , SUBSTR ( TOKEN , DECODE(LEVEL, 1, 1, INSTR(TOKEN, DELIMITER, 1, LEVEL-1)+1) , INSTR(TOKEN, DELIMITER, 1, LEVEL) - DECODE(LEVEL, 1, 1, INSTR(TOKEN, DELIMITER, 1, LEVEL-1)+1) ) TOKEN FROM ( SELECT REPLACE( LOWER(p_ash_columns) ,‘ ‘,‘‘)||‘+‘ AS TOKEN , ‘+‘ AS DELIMITER FROM DUAL ) CONNECT BY INSTR(TOKEN, DELIMITER, 1, LEVEL)>0 ORDER BY LEVEL ASC ) loop l_output_line := l_output_line || ‘ | ‘ || case s.token -- actual column names in gv$session when ‘inst_id‘ then lpad(o_inst_id , w_inst_id , ‘ ‘) when ‘con_id‘ then lpad(o_con_id , w_con_id , ‘ ‘) when ‘sid‘ then lpad(o_sid , w_sid , ‘ ‘) when ‘username‘ then rpad(o_username , w_username , ‘ ‘) when ‘machine‘ then rpad(o_machine , w_machine , ‘ ‘) when ‘terminal‘ then rpad(o_terminal , w_terminal , ‘ ‘) when ‘program‘ then rpad(o_program , w_program , ‘ ‘) when ‘event‘ then rpad(o_event , w_event , ‘ ‘) when ‘wait_class‘ then rpad(o_wait_class , w_wait_class , ‘ ‘) when ‘state‘ then rpad(o_state , w_state , ‘ ‘) when ‘p1‘ then rpad(o_p1 , w_p1 , ‘ ‘) when ‘p2‘ then rpad(o_p2 , w_p2 , ‘ ‘) when ‘p3‘ then rpad(o_p3 , w_p3 , ‘ ‘) when ‘row_wait_obj#‘ then rpad(o_row_wait_obj# , w_row_wait_obj# , ‘ ‘) when ‘row_wait_file#‘ then rpad(o_row_wait_file# , w_row_wait_file# , ‘ ‘) when ‘row_wait_block#‘ then rpad(o_row_wait_block# , w_row_wait_block# , ‘ ‘) when ‘row_wait_row#‘ then rpad(o_row_wait_row# , w_row_wait_row# , ‘ ‘) when ‘blocking_session_status‘ then rpad(o_blocking_session_status , w_blocking_session_status , ‘ ‘) when ‘blocking_instance‘ then rpad(o_blocking_instance , w_blocking_instance , ‘ ‘) when ‘blocking_session‘ then rpad(o_blocking_session , w_blocking_session , ‘ ‘) when ‘sql_hash_value‘ then rpad(o_sql_hash_value , w_sql_hash_value , ‘ ‘) when ‘sql_id‘ then rpad(o_sql_id , w_sql_id , ‘ ‘) when ‘sql_child_number‘ then rpad(o_sql_child_number , w_sql_child_number , ‘ ‘) when ‘plsql_entry_object_id‘ then rpad(o_plsql_entry_object_id , w_plsql_entry_object_id , ‘ ‘) when ‘plsql_entry_subprogram_id‘ then rpad(o_plsql_entry_subprogram_id , w_plsql_entry_subprogram_id, ‘ ‘) when ‘plsql_object_id‘ then rpad(o_plsql_object_id , w_plsql_object_id , ‘ ‘) when ‘plsql_subprogram_id‘ then rpad(o_plsql_subprogram_id , w_plsql_subprogram_id , ‘ ‘) when ‘module‘ then rpad(o_module , w_module , ‘ ‘) when ‘action‘ then rpad(o_action , w_action , ‘ ‘) when ‘client_identifier‘ then rpad(o_client_identifier , w_client_identifier , ‘ ‘) when ‘service_name‘ then rpad(o_service_name , w_service_name , ‘ ‘) -- aliases for convenience (only either real name or alias should be used together at the same time) when ‘user‘ then rpad(o_username , w_username , ‘ ‘) when ‘obj‘ then rpad(o_row_wait_obj# , w_row_wait_obj# , ‘ ‘) when ‘file‘ then rpad(o_row_wait_file# , w_row_wait_file# , ‘ ‘) when ‘block‘ then rpad(o_row_wait_block# , w_row_wait_block# , ‘ ‘) when ‘row‘ then rpad(o_row_wait_row# , w_row_wait_row# , ‘ ‘) when ‘bss‘ then rpad(o_blocking_session_status , w_blocking_session_status , ‘ ‘) when ‘bsi‘ then rpad(o_blocking_instance , w_blocking_instance , ‘ ‘) when ‘bs‘ then rpad(o_blocking_session , w_blocking_session , ‘ ‘) when ‘sql‘ then rpad(o_sql_hash_value , w_sql_hash_value , ‘ ‘) when ‘sqlid‘ then rpad(o_sql_id , w_sql_id , ‘ ‘) when ‘child‘ then rpad(o_sql_child_number , w_sql_child_number , ‘ ‘) when ‘plsql_eoid‘ then rpad(o_plsql_entry_object_id , w_plsql_entry_object_id , ‘ ‘) when ‘plsql_esubpid‘ then rpad(o_plsql_entry_subprogram_id , w_plsql_entry_subprogram_id, ‘ ‘) when ‘plsql_oid‘ then rpad(o_plsql_object_id , w_plsql_object_id , ‘ ‘) when ‘plsql_subpid‘ then rpad(o_plsql_subprogram_id , w_plsql_subprogram_id , ‘ ‘) when ‘mod‘ then rpad(o_module , w_module , ‘ ‘) when ‘act‘ then rpad(o_action , w_action , ‘ ‘) when ‘cid‘ then rpad(o_client_identifier , w_client_identifier , ‘ ‘) when ‘service‘ then rpad(o_service_name , w_service_name , ‘ ‘) when ‘wait_event‘ then rpad(o_event , w_event , ‘ ‘) when ‘wait_state‘ then rpad(o_state , w_state , ‘ ‘) else ‘‘ end; -- case s.token end loop; -- ash parameter tokenizer output(l_output_line); end loop; -- grouped ash samples end out_ash; -- and it begins!!! begin -- get snappers own sid into g_mysid select sid into g_mysid from v$mystat where rownum = 1; pagesize := nvl( getopt(‘&snapper_options‘, ‘pagesize=‘ ), pagesize); --output ( ‘Pagesize=‘||pagesize ); lv_ash := getopt(‘&snapper_options‘, ‘ash‘); lv_stats := getopt(‘&snapper_options‘, ‘stat‘); if lv_ash is not null then gather_ash := 1; end if; if lv_stats is not null then gather_stats := 1; end if; --output(‘all=‘||case when getopt(‘&snapper_options‘, ‘all‘) = chr(0) then ‘chr(0)‘ when getopt(‘&snapper_options‘, ‘all‘) is null then ‘null‘ else (getopt(‘&snapper_options‘,‘all‘)) end); -- some additional default value logic if getopt(‘&snapper_options‘, ‘all‘) is not null then --output(‘setting stats to all due to option = all‘); gather_stats := 1; gather_ash := 1; else if (lv_ash is null and lv_stats is null) then gather_stats := 0; gather_ash := 1; end if; end if; -- determine which performance counters and stats to collect lv_gather := case nvl( lower(getopt (‘&snapper_options‘, ‘gather=‘)), ‘stw‘) when ‘all‘ then ‘stw‘ else nvl( lower(getopt (‘&snapper_options‘, ‘gather=‘)), ‘stw‘) end; --lv_gather:=getopt (‘&snapper_options‘, ‘gather=‘); --output(‘lv_gather=‘||lv_gather); g_snap_begin := lower(getopt(‘&snapper_options‘, ‘begin‘ )); g_snap_end := lower(getopt(‘&snapper_options‘, ‘end‘ )); --output(‘g_snap_begin = ‘||g_snap_begin); --output(‘g_snap_end = ‘||g_snap_end); if pagesize > 0 then output(‘ ‘); output(‘-- Session Snapper v4.24 - by Tanel Poder ( http://blog.tanelpoder.com/snapper ) - Enjoy the Most Advanced Oracle Troubleshooting Script on the Planet! :)‘); output(‘ ‘); end if; -- initialize statistic and event name array -- fetch statistic names with their adjusted IDs select /* get_stat_names */ * bulk collect into sn_tmp from ( select ‘STAT‘ stype, statistic# - pls_adjust statistic#, name from v$statname where (lv_gather like ‘%s%‘ or lv_gather like ‘%a%‘) -- union all select ‘WAIT‘, event# + (select count(*) from v$statname) + 1 - pls_adjust, name from v$event_name where (lv_gather like ‘%w%‘ or lv_gather like ‘%a%‘) -- union all select ‘TIME‘ stype, stat_id - pls_adjust statistic#, stat_name name from gv$sys_time_model where (lv_gather like ‘%t%‘ or lv_gather like ‘%a%‘) -- union all select ‘LATG‘, l.latch# + (select count(*) from v$statname) + (select count(*) from v$event_name) + 1 - pls_adjust statistic#, name from gv$latch l where (lv_gather like ‘%l%‘ or lv_gather like ‘%a%‘) -- &_IF_X_ACCESSIBLE union all &_IF_X_ACCESSIBLE select ‘BUFG‘, &_IF_X_ACCESSIBLE indx + &_IF_X_ACCESSIBLE (select count(*) from v$statname) + &_IF_X_ACCESSIBLE (select count(*) from v$event_name) + &_IF_X_ACCESSIBLE (select count(*) from gv$latch) + &_IF_X_ACCESSIBLE 1 - pls_adjust statistic#, &_IF_X_ACCESSIBLE kcbwhdes name &_IF_X_ACCESSIBLE from x$kcbwh &_IF_X_ACCESSIBLE where (lv_gather like ‘%b%‘ or lv_gather like ‘%a%‘) -- union all select ‘ENQG‘, ascii(substr(e.eq_type,1,1))*256 + ascii(substr(e.eq_type,2,1)) + (select count(*) from v$statname) + (select count(*) from v$event_name) + (select count(*) from gv$latch) + &_IF_X_ACCESSIBLE (select count(*) from x$kcbwh) + 1 - pls_adjust statistic#, eq_type from ( select es.eq_type ||‘ - ‘||lt.name eq_type, total_req# from gv$enqueue_stat es , gv$lock_type lt where es.eq_type = lt.type ) e where (lv_gather like ‘%e%‘ or lv_gather like ‘%a%‘) ) snapper_statnames order by stype, statistic#; -- store these into an index_by array organized by statistic# for fast lookup for i in 1..sn_tmp.count loop sn(sn_tmp(i).statistic#) := sn_tmp(i); sn_reverse(sn_tmp(i).stype||‘,‘||sn_tmp(i).name) := sn_tmp(i); end loop; -- main sampling loop for c in 1..&snapper_count loop -- sesstat and other performance counter sampling if gather_stats = 1 then -- print header if required gv_header_string := CASE WHEN output_header = 1 THEN ‘HEAD,‘ END || CASE WHEN output_inst = 1 THEN ‘ INST,‘ END || CASE WHEN output_sid = 1 THEN ‘ SID,‘ END || CASE WHEN output_inst_sid = 1 THEN ‘ SID @INST,‘ END || CASE WHEN output_username = 1 THEN ‘ USERNAME ,‘ END || CASE WHEN output_time = 1 THEN ‘ SNAPSHOT START ,‘ END || CASE WHEN output_seconds = 1 THEN ‘ SECONDS,‘ END || CASE WHEN output_stype = 1 THEN ‘ TYPE,‘ END || CASE WHEN output_sname = 1 THEN rpad(‘ STATISTIC‘,59,‘ ‘)||‘,‘ END || CASE WHEN output_delta = 1 THEN ‘ DELTA,‘ END || CASE WHEN output_delta_s = 1 THEN ‘ DELTA/SEC,‘ END || CASE WHEN output_hdelta = 1 THEN ‘ HDELTA,‘ END || CASE WHEN output_hdelta_s = 1 THEN ‘ HDELTA/SEC,‘ END || CASE WHEN output_percent = 1 THEN ‘ %TIME,‘ END || CASE WHEN output_pcthist = 1 THEN ‘ GRAPH ,‘ END || CASE WHEN output_eventcnt = 1 THEN ‘ NUM_WAITS,‘ END || CASE WHEN output_eventcnt_s = 1 THEN ‘ WAITS/SEC,‘ END || CASE WHEN output_eventavg = 1 THEN ‘ AVERAGES ‘ END ; if g_snap_begin is null then if pagesize > 0 and mod(c-1, pagesize) = 0 then output(rpad(‘-‘,length(gv_header_string),‘-‘)); output(gv_header_string); output(rpad(‘-‘,length(gv_header_string),‘-‘)); else if pagesize = -1 and c = 1 then output(gv_header_string); end if; end if; else output(‘Taking BEGIN sample ...‘); end if; -- TODO raise an error if both begin and end are used together -- TODO conditionally comment out the refcursor use unless begin and end is used -- manual before/after snapshots (snapper v4) if g_snap_begin is not null or g_snap_end is not null then if g_snap_begin is not null then get_sessions; snap(d1,s1,l1,g_snap1); &_MANUAL_SNAPSHOT open :snapper for select column_value rec from table(g_snap1); -- if you see this error then run: "VAR SNAPPER REFCURSOR" first! exit; end if; if g_snap_end is not null then &_MANUAL_SNAPSHOT fetch :snapper bulk collect into g_snap1; -- You should run snapper with BEGIN option first! -- procedure snap_from_stats_string (p_string_stats in sys.dbms_debug_vc2coll, p_snapdate out date, p_stats out stab, l_stats out ltab) snap_from_stats_string(g_snap1, d1, s1, l1); end if; else -- normal interval sampling if c = 1 then get_sessions; snap(d1,s1,l1,g_snap1); else get_sessions; d1 := d2; s1 := s2; g_snap1 := g_snap2; end if; -- c = 1 end if; end if; -- gather_stats = 1 -- ASH style sampling &_USE_DBMS_LOCK ash_date1 := sysdate; &_USE_DBMS_LOCK if gather_ash = 1 then &_USE_DBMS_LOCK while sysdate < (ash_date1 + (&snapper_sleep/86400)) loop &_USE_DBMS_LOCK -- get active session records from g_sessions &_USE_DBMS_LOCK get_sessions; &_USE_DBMS_LOCK extract_ash(); &_USE_DBMS_LOCK -- sleep timeout backoff depending on the duration sampled (for up to 10 seconds total sampling time will get max 100 Hz sampling) &_USE_DBMS_LOCK -- for longer duration sampling the algorithm will back off and for long durations (over 100 sec) the sampling rate will stabilize &_USE_DBMS_LOCK -- at 1Hz &_USE_DBMS_LOCK dbms_lock.sleep( greatest(0.1,(least(1,&snapper_sleep*&snapper_count/100))) ); &_USE_DBMS_LOCK end loop; &_USE_DBMS_LOCK else &_USE_DBMS_LOCK dbms_lock.sleep( ((ash_date1+(&snapper_sleep/86400)) - sysdate)*86400 ); &_USE_DBMS_LOCK null; &_USE_DBMS_LOCK end if; &_USE_DBMS_LOCK ash_date2 := sysdate; -- sesstat new sample and delta calculation if gather_stats = 1 then get_sessions; snap(d2,s2,l2,g_snap2); -- manually coded nested loop outer join for calculating deltas: -- why not use a SQL join? this would require creation of PL/SQL -- collection object types, but Snapper does not require any changes -- to the database, so any custom object types are out! changed_values := 0; missing_values_s1 := 0; missing_values_s2 := 0; -- remember last disappeared SID so we wouldn‘t need to output a warning -- message for each statistic row of that disappeared sid disappeared_sid := 0; i :=1; -- iteration counter (for debugging) a :=1; -- s1 array index b :=1; -- s2 array index if s2.count > 0 then lv_curr_sid := s2(b).sid; end if; while ( a <= s1.count and b <= s2.count ) loop if lv_curr_sid != 0 and lv_curr_sid != s2(b).sid then if pagesize > 0 and mod(c-1, pagesize) = 0 then -- if filtering specific stats, assuming that it‘s better to not leave spaces between every session data if getopt(‘&snapper_options‘, ‘sinclude=‘)||getopt(‘&snapper_options‘, ‘tinclude=‘ )||getopt(‘&snapper_options‘, ‘winclude=‘ ) is null then output(‘ ‘); -- output(rpad(‘-‘,length(gv_header_string),‘-‘)); -- output(gv_header_string); -- output(rpad(‘-‘,length(gv_header_string),‘-‘)); end if; end if; lv_curr_sid := s2(b).sid; end if; delta := 0; -- don‘t print case when s1(a).sid = s2(b).sid then case when s1(a).statistic# = s2(b).statistic# then delta := s2(b).value - s1(a).value; evcnt := s2(b).event_count - s1(a).event_count; --output(‘DEBUG, s1(a).statistic# s2(b).statistic#, a=‘||to_char(a)||‘ b=‘||to_char(b)||‘ s1.count=‘||s1.count||‘ s2.count=‘||s2.count||‘ s2.count=‘||s2.count); if delta != 0 then fout(); end if; a := a + 1; b := b + 1; when s1(a).statistic# > s2(b).statistic# then delta := s2(b).value; evcnt := s2(b).event_count; if delta != 0 then fout(); end if; b := b + 1; when s1(a).statistic# < s2(b).statistic# then output(‘ERROR, s1(a).statistic# < s2(b).statistic#, a=‘||to_char(a)||‘ b=‘||to_char(b)||‘ s1.count=‘||s1.count||‘ s2.count=‘||s2.count||‘ s2.count=‘||s2.count); a := a + 1; b := b + 1; else output(‘ERROR, s1(a).statistic# ? s2(b).statistic#, a=‘||to_char(a)||‘ b=‘||to_char(b)||‘ s1.count=‘||s1.count||‘ s2.count=‘||s2.count||‘ s2.count=‘||s2.count); a := a + 1; b := b + 1; end case; -- s1(a).statistic# ... s2(b).statistic# when s1(a).sid > s2(b).sid then delta := s2(b).value; evcnt := s2(b).event_count; if delta != 0 then fout(); end if; b := b + 1; when s1(a).sid < s2(b).sid then if disappeared_sid != s1(a).sid then output(‘WARN, Session has disappeared since previous snapshot, ignoring SID=‘||to_char(s1(a).sid)||‘ debug(a=‘||to_char(a)||‘ b=‘||to_char(b)||‘ s1.count=‘||s1.count||‘ s2.count=‘||s2.count||‘ s2.count=‘||s2.count||‘)‘); end if; disappeared_sid := s1(a).sid; a := a + 1; else output(‘ERROR, Should not be here, SID=‘||to_char(s2(b).sid)||‘ a=‘||to_char(a)||‘ b=‘||to_char(b)||‘ s1.count=‘||s1.count||‘ s2.count=‘||s2.count||‘ s2.count=‘||s2.count); end case; -- s1(a).sid ... s2(b).sid i:=i+1; if delta != 0 then changed_values := changed_values + 1; end if; -- delta != 0 end loop; -- while ( a <= s1.count and b <= s2.count ) if pagesize > 0 and changed_values > 0 then output(‘ ‘); output(‘-- End of Stats snap ‘||to_char(c)||‘, end=‘||to_char(d2, ‘YYYY-MM-DD HH24:MI:SS‘)||‘, seconds=‘||round(get_seconds(d2-d1), 1)); end if; output(‘ ‘); end if; -- gather_stats = 1 if gather_ash = 1 then -- get ASH sample grouping details g_ash_columns := nvl( getopt(‘&snapper_options‘, ‘ash=‘ ), g_ash_columns ); -- optional additional ASH groupings g_ash_columns1 := case when getopt(‘&snapper_options‘, ‘ash1‘ ) is null then null when getopt(‘&snapper_options‘, ‘ash1‘ ) = chr(0) then g_ash_columns1 else getopt(‘&snapper_options‘, ‘ash1=‘ ) end; g_ash_columns2 := case when getopt(‘&snapper_options‘, ‘ash2‘ ) is null then null when getopt(‘&snapper_options‘, ‘ash2‘ ) = chr(0) then g_ash_columns2 else getopt(‘&snapper_options‘, ‘ash2=‘ ) end; g_ash_columns3 := case when getopt(‘&snapper_options‘, ‘ash3‘ ) is null then null when getopt(‘&snapper_options‘, ‘ash3‘ ) = chr(0) then g_ash_columns3 else getopt(‘&snapper_options‘, ‘ash3=‘ ) end; g_ash_columns4 := case when getopt(‘&snapper_options‘, ‘ash4‘ ) is null then null when getopt(‘&snapper_options‘, ‘ash4‘ ) = chr(0) then g_ash_columns4 else getopt(‘&snapper_options‘, ‘ash4=‘ ) end; g_ash_columns5 := case when getopt(‘&snapper_options‘, ‘ash5‘ ) is null then null when getopt(‘&snapper_options‘, ‘ash5‘ ) = chr(0) then g_ash_columns5 else getopt(‘&snapper_options‘, ‘ash5=‘ ) end; g_ash_columns6 := case when getopt(‘&snapper_options‘, ‘ash6‘ ) is null then null when getopt(‘&snapper_options‘, ‘ash6‘ ) = chr(0) then g_ash_columns6 else getopt(‘&snapper_options‘, ‘ash6=‘ ) end; -- group ASH records and print report out_ash( g_ash_columns, 10 ); -- group and print optional ASH reports if g_ash_columns1 is not null then out_ash( g_ash_columns1, 10 ); end if; if g_ash_columns2 is not null then out_ash( g_ash_columns2, 10 ); end if; if g_ash_columns3 is not null then out_ash( g_ash_columns3, 10 ); end if; if g_ash_columns4 is not null then out_ash( g_ash_columns4, 10 ); end if; if g_ash_columns5 is not null then out_ash( g_ash_columns5, 10 ); end if; if g_ash_columns6 is not null then out_ash( g_ash_columns6, 10 ); end if; if pagesize > 0 then output(‘ ‘); output(‘-- End of ASH snap ‘||to_char(c)||‘, end=‘||to_char(ash_date2, ‘YYYY-MM-DD HH24:MI:SS‘)||‘, seconds=‘||to_char(round((ash_date2-ash_date1) * 86400, 1))||‘, samples_taken=‘||g_ash_samples_taken||‘, AAS=‘||CASE WHEN g_ash_samples_taken = 0 THEN ‘(No ASH sampling in begin/end snapshot mode)‘ ELSE TO_CHAR(ROUND(g_ash.COUNT/NULLIF(g_ash_samples_taken,0),1)) END ); --output(‘-- End of ASH snap ‘||to_char(c)||‘, end=‘||to_char(ash_date2, ‘YYYY-MM-DD HH24:MI:SS‘)||‘, seconds=‘||to_char(round((ash_date2-ash_date1) * 86400, 1))||‘, samples_taken=‘||g_ash_samples_taken||‘, AAS=‘||TO_CHAR(ROUND(g_ash.COUNT/g_ash_samples_taken,1))||‘, Active%=‘||TO_CHAR(ROUND(g_ash.COUNT/g_ash_samples_taken*100,1))||‘%‘ ); output(‘ ‘); end if; reset_ash(); end if; -- gather_ash = 1 end loop; -- for c in 1..snapper_count exception when others then raise_application_error(-20000, ‘Snapper: Probably bad syntax or no execute rights on SYS.DBMS_LOCK‘||chr(10)||‘Check http://blog.tanelpoder.com/snapper for instructions‘||chr(10)||sqlerrm); end; / undefine snapper_sleep undefine snapper_count undefine snapper_sid undefine ssid_begin undefine _IF_ORA12_OR_HIGHER undefine _IF_ORA11_OR_HIGHER undefine _IF_LOWER_THAN_ORA11 undefine _IF_LOWER_THAN_ORA12 undefine _NO_BLK_INST undefine _YES_BLK_INST undefine _NO_PLSQL_OBJ_ID undefine _YES_PLSQL_OBJ_ID undefine _IF_DBMS_SYSTEM_ACCESSIBLE undefine _IF_X_ACCESSIBLE undefine _MANUAL_SNAPSHOT undefine _USE_DBMS_LOCK col snapper_ora12higher clear col snapper_ora12lower clear col snapper_ora11higher clear col snapper_ora11lower clear col dbms_system_accessible clear col x_accessible clear col no_plsql_obj_id clear col yes_plsql_obj_id clear col no_blk_inst clear col yes_blk_inst clear col manual_snapshot clear col use_dbms_lock clear col snapper_sid clear col sid_filter clear col inst_filter clear set serveroutput off