栈类 - 链式存储

代码:

// linkstack.hpp
// 栈类

#pragma once

#include "linklist.hpp"

template <typename T>
class LinkStack
{
public:
	LinkStack();
	~LinkStack();
public:
	int clear();
	int push(T &t);
	int pop(T &t);
	int top(T &t);
	int size();
protected:
	LinkList<T> *m_list;
};

template <typename T>
LinkStack<T>::LinkStack()
{
	m_list = new LinkList < T > ;
}

template <typename T>
LinkStack<T>::~LinkStack()
{
	clear();
	delete m_list;
	m_list = NULL;
}

template <typename T>
int LinkStack<T>::clear()
{
	T t;
	while (m_list->getLen() > 0) {
		m_list->del(0, t);
	}

	return 0;
}

template <typename T>
int LinkStack<T>::push(T &t)
{
	return m_list->insert(t, 0);
}

template <typename T>
int LinkStack<T>::pop(T &t)
{
	return m_list->del(0, t);
}

template <typename T>
int LinkStack<T>::top(T &t)
{
	return m_list->get(0, t);
}

template <typename T>
int LinkStack<T>::size()
{
	return m_list->getLen();
}
// main.cpp
// 链式存储栈类的测试程序

#include <iostream>
#include <cstdio>
#include "linkstack.hpp"

using namespace std;

struct Student
{
	char name[32];
	int age;
};

void play()
{
	Student s1, s2, s3;
	s1.age = 21;
	s2.age = 22;
	s3.age = 23;

	LinkStack<Student> ls; // 创建栈

	// 入栈
	ls.push(s1);
	ls.push(s2);
	ls.push(s3);

	// 获取栈顶元素
	Student tmp;
	ls.top(tmp);
	cout << "top of stack: " << tmp.age << endl;
	cout << "size of stack: " << ls.size() << endl;

	// 出栈
	while (ls.size() > 0) {
		ls.pop(tmp);
	}

	ls.clear();

}

int main()
{
	play();

	return 0;
}

有关链表类的设计与实现请参看我的另两篇文章:C++链表模板类线性表链式存储设计与实现 - API实现

// linklist.h
// 链表类

#pragma once

#include <iostream>
#include <cstdio>
using namespace std;

template <typename T>
struct Node
{
	T t;
	Node<T> *next;
};

template <typename T>
class LinkList
{
public:
	LinkList();
	~LinkList();

public:
	int clear();
	int insert(T &t, int pos);
	int get(int pos, T &t);
	int del(int pos, T &t);
	int getLen();

protected:
	Node<T> *header;
	int length;
};

template <typename T>
LinkList<T>::LinkList()
{
	header = new Node < T > ;
	header->next = NULL;
	length = 0;
}

template <typename T>
LinkList<T>::~LinkList()
{
	Node<T> *tmp = NULL;

	while (header) {
		tmp = header->next;
		delete header;
		header = tmp;
	}
}

template <typename T>
int LinkList<T>::clear()
{
	~LinkList();
	LinkList();
	return 0;
}

template <typename T>
int LinkList<T>::insert(T &t, int pos)
{
	Node<T> *cur = NULL;

	// 对pos的容错处理
	if (pos >= length) {
		pos = length;
	}

	cur = header;
	for (int i = 0; i < pos; ++i) {
		cur = cur->next;
	}

	// 把上层应用的t结点缓存到容器中
	Node<T> *node = new Node < T > ;
	node->next = NULL;
	node->t = t; // 把t缓存到容器中

	node->next = cur->next;
	cur->next = node;

	++length;

	return 0;
}

template <typename T>
int LinkList<T>::get(int pos, T &t)
{
	Node<T> *cur = NULL;

	if (pos >= length) {
		return -1;
	}

	cur = header;
	for (int i = 0; i < pos; ++i) {
		cur = cur->next;
	}

	t = cur->next->t; // 把pos位置的结点赋值给t

	return 0;
}

template <typename T>
int LinkList<T>::del(int pos, T &t)
{
	Node<T> *cur = NULL;

	if (pos >= length) {
		return -1;
	}

	cur = header;
	for (int i = 0; i < pos; ++i) {
		cur = cur->next;
	}
	Node<T> *ret = NULL;
	ret = cur->next;
	t = ret->t; // 把缓存的结点给上层应用t

	// 删除操作
	cur->next = ret->next;
	--length;
	delete ret; // 注意释放内存,因为insert的时候new Node<T>

	return 0;
}

template <typename T>
int LinkList<T>::getLen()
{
	return length;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-11-06 04:32:08

栈类 - 链式存储的相关文章

栈的链式存储结构和入栈出栈操作

参考<大话数据结构>P98~99——栈的链式存储结构. 进栈: 出栈: 举个简单的例子: 代码和解释如下(VS2012测试通过): 1 #include <iostream> 2 #include <string> 3 using namespace std; 4 5 typedef string status;//用书上推荐的status返回是否成功,C++中的模板类string比字符数组char[]更方便 6 7 //栈的结点 8 //包含data,和指向下一个结点

栈的链式存储及基本操作

栈的链式存储结构称为链栈,它是运算受限的单链表,其插入和删除操作仅限制在栈顶进行. 先将练习结果贴下 相关C代码如下: /*数据结构之栈*/ #include <stdio.h> #include <malloc.h> #include <stdlib.h> typedef int DataType; /*定义栈的结构体类型*/ typedef struct NODE{ DataType data; NODE * pNext; }Node,* PNode; typede

栈及栈的链式存储结构(栈链)

栈:线性结构,后进先出.栈(Stack)是一种特殊的线性表(顺序表,链表)只在表尾进行删除和插入操作. 注意:对于栈来说,表尾称为栈的栈顶(top),表头称为栈底(bottom). 栈也是线性结构的一种特例.与队列不同,他只有一个口,只能从这里读或者写数据,这个口称为栈顶(top).栈是一种先进后出的数据结构.先进来的元素会放入栈底,而后进来的元素被放在它的上面,最后进来的元素的上面的位置,称为栈顶. 栈所提供的操作比一般的线性表要少很多,只提供:初始化.销毁.判断是否为空.求栈的长度.清空栈.

数据结构 - 栈的链式存储

栈的链式存储 1 栈的链式表示 栈的链式存储结构称为链栈,是运算受限的单链表.其插入和删除操作只能在表头位置上进行.因此,链栈没有必要像单链表那样附加头结点,栈顶指针top就是链表的头指针.图3-4是栈的链式存储表示形式. 链栈的结点类型说明如下: typedef struct Snode { ElemType data ; struct Snode *next ; } SNode, *Link_Stack ; 链栈基本操作的实现 2 链栈基本操作的实现 (1) 栈的初始化 SNode *Ini

数据结构_线性表_顺序存储之1顺序栈2共享栈_链式存储之链栈_栈的应用举例

1>//栈是先进后出,后进先出的线性表 简称LIFO线性表 //栈的顺序存储结构成为顺序栈(sequebtial stack). //顺序栈利用一组地址连的存储单元依次存放从栈底到 栈顶的数据元素,通常用一维数组存放栈的元素 //"指针"top并非指针,而是表示栈顶元素的当前位置 //top不是指针型变量而是整形变量,top=0空栈,top=MaxSize 表示满栈,当top>maxsize 表示栈溢出 代码 #include <stdio.h> #includ

栈的链式存储结构及应用(C、Java代码)

链式存储结构最大的好处就是没有空间的限制,可以通过指针指向将结点像以链的形式把结点链接,我们熟悉的线性表就有链式存储结构. 当然,栈同样有链式存储结构,栈的链式存储结构,简称链栈. 从图片可以看到,和单链表很像,拥有一个头指针top,又称作栈顶指针,所以此时就不再需要单链表里面的头结点了. 对于链栈来说,基本不存在栈满的情况,除非计算机内存已经没有了可使用的空间,如果真的存在,那么计算机系统已经面临着即将死机崩溃的情况,而不是这个链栈是否溢出的问题了. 对于空栈来说,链表的定义是头指针指向NUL

栈的链式存储构架

定义 栈是限定只能在表尾删除和插入操作的线性表. 允许插入和删除的一端称为栈顶(top),另一端称为栈底(bottom).栈又称为后进先出(Last In First Out)的线性表,简称LIFO结构. 栈的插入操作称为进栈,也称压栈.入栈. 栈的删除操作称为出栈,也称弹栈. 栈的抽象数据结构 由于栈本身就是一个线性表,所以线性表的操作特性它都具备,针对它的特殊性,在它的操作上可能会有一些变化.将进栈和出栈分别改名为push和pop. 由于栈本身是一个线性表,所以线性表的顺序存储结构和链式存储

栈的链式存储 - API实现

基本概念 其他概念详情参看前一篇博文:栈的顺序存储 - 设计与实现 - API实现 这里也是运用了链表的链式存储API快速实现了栈的API. 代码: // linkstack.h // 链式存储栈的API声明 #ifndef _MY_LINKSTACK_H_ #define _MY_LINKSTACK_H_ typedef void LinkStack; // 创建栈 LinkStack* LinkStack_Create(); // 销毁栈 void LinkStack_Destroy(Lin

栈(链式存储结构)

堆栈:具有一定操作约束的线性表,只能在一端作插入.删除 具有后入先出的特性(Last In First Out) 分顺序存储结构.链式存储结构两种形式 堆栈的顺序存储结构 通常由一个一维数组和一个栈顶元素变量组成 图解如下: 形式一:构建结构体 0.结构初始化 #define MaxSize ### struct StackNode { ElementType Data[MaxSize]; int top; }; 1.建立空栈 struct StackNode* createStack() {