2. 顺序表 数据结构与算法(python)

2. 顺序表

在程序中,经常需要将一组(通常是某个类型的)数据元素作为整体管理和使用,需要创建这种元素组,用变量记录他们,传进传出函数等。一组数据中包含的元素个数可能发生变化(可以增加或删除元素)。

对于这种需求,最简单的解决方法便是将这样一组元素看成一个序列,用元素在序列里的位置和顺序,表示实际应用中的某种有意义的信息,或者表示数据之间的某种关系。

这样的一组序列元素的组织形式,我们可以将其抽象为线性表。一个线性表是某类元素的一个集合,还记录着元素之间的一种顺序关系。线性表是最基本的数据结构之一,在实际程序中应用非常广泛,它还经常被用作复杂的数据结构的实现基础。

根据线性表的实际存储方式,分为两种实现模型:

? 顺序表,将元素顺序地存放在一块连续的存储区里,元素间的顺序关系由它们的存储顺序自然表示。

? 链表,将元素存放在通过链接构造起来的一系列存储块中。

2.1 顺序表的形式

顺序表的基本形式

图a表示的是顺序表的基本形式,数据元素本身连续存储,每个元素所占的存储单元大小固定相同,元素的下标是其逻辑地址,而元素存储的物理地址(实际内存地址)可以通过存储区的起始地址Loc(e0)加上逻辑地址(第i个元素)与存储单元大小(c)的乘积计算而得,即:

Loc(ej) = Loc(e0) + c*j

故,访问指定元素时无需从头遍历,通过计算便可得对应地址,其时间复杂度为O(1)。

如果元素的大小不统一,则需采用图b的元素外置的形式,将实际数据元素另行存储,而顺序表中各单元位置保存对应元素的地址信息(即链接)。由于每个链接所需的存储量相同,通过上述公式,可以计算出元素链接的存储位置,而后顺着链接找到实际存储的数据元素。注意,图b中的c不再是数据元素的大小,而是存储一个链接地址所需的存储量,这个量通常很小。

图b这样的顺序表也被称为对实际数据的索引,这就是简单的索引结构。

2.2 顺序表的结构与实现

顺序表的结构

一个顺序表的完整信息包括两部分,一部分是表中的元素集合,即数据区,另一部分是为实现正确操作而需记录的信息,即有关表的整体情况的信息,又叫表头信息,这部分信息主要包括元素存储区的容量和当前表中已有的元素的个数两项。

顺序表的两种基本实现方式

图a是一体式结构,存储表信息的单元与元素存储区以连续的方式安排在一块存储区里,两部分数据的整体形成一个完整的顺序表对象。

一体式结构整体性强,易于管理。但是由于数据元素存储区域是表对象的一部分,顺序表创建后,元素存储区就固定了。

图b是分离式结构,表对象里只保存与整个表有关的信息(即容量和元素个数),实际数据元素存放在另一个独立的元素存储区里,通过链接与基本表对象关联。

元素存储区替换

一体式结构由于顺序表信息区与数据区连续存储在一起,所以若想更换数据区,则只能整体搬迁,即整个顺序表对象(指存储顺序表的结构信息的区域)改变了。

分离式结构若想要更换数据区,只需将表信息区中的数据区链接地址更新即可,而该顺序表对象不变。

元素存储区扩充

采用分离式结构的顺序表,若将数据区更换为存储空间更大的区域,则可以在不改变表对象的前提下对其数据存储区进行扩充,所有使用这个表的地方都不必修改。只要程序的运行环境(计算机系统)还有空闲存储,这种表结构就不会因为满了而导致操作无法进行。人们把采用这种技术实现的顺序表称之为动态顺序表,因为其容量可以在使用中动态变化。

扩充的两种策略:

? (1)每次扩充增加固定数目的存储位置,如每次扩充增加10个元素的位置,这种策略可称为线性增长。

? 特点:节省空间,但是扩充操作频繁,操作次数多。

? (2)每次扩充容量加倍,如每次扩充增加一倍存储空间。

? 特点:减少了扩充操作的执行次数,但可能会浪费空间资源。以空间换时间,推荐的方式。

2.3 顺序表的操作

增加元素

如果所示,为顺序表增加新元素111的三种方式

a. 尾端加入元素,时间复杂度为O(1)

b. 非保序的加入元素(不常见),时间复杂度为O(1)

c. 保序的元素加入,时间复杂度为O(n)

删除元素

a. 删除表尾元素,时间复杂度为O(1)

b. 非保序的元素删除(不常见),时间复杂度为O(1)

c. 保序的元素删除,时间复杂度为O(n)

2.4 Python中的顺序表

Python中的list和tuple两种类型采用了顺序表的实现技术,具有前面讨论的顺序表的所有性质。

tuple是不可变类型,即不变的顺序表,因此不支持改变其内部状态的任何操作,而其他方面,则与list的性质类似。

list的基本实现技术

Python标准类型list就是一种元素个数可变的线性表,可以加入和删除元素,并在各种操作中维持已有元素的顺序(即保序),而且还具有以下行为特征:

  • 基于下标(位置)的高效元素访问和更新,时间复杂度应该是O(1);

    为满足该特征,应该采用顺序表技术,表中元素保存在一块连续的存储区中。

  • 允许任意加入元素,而且在不断加入元素的过程中,表对象的标识(函数id得到的值)不变。

    为满足该特征,就必须能更换元素存储区,并且为保证更换存储区时list对象的标识id不变,只能采用分离式实现技术。

在Python的官方实现中,list就是一种采用分离式技术实现的动态顺序表。这就是为什么用list.append(x) (或 list.insert(len(list), x),即尾部插入)比在指定位置插入元素效率高的原因。

在Python的官方实现中,list实现采用了如下的策略:在建立空表(或者很小的表)时,系统分配一块能容纳8个元素的存储区;在执行插入操作(insert或append)时,如果元素存储区满就换一块4倍大的存储区。但如果此时的表已经很大(目前的阀值为50000),则改变策略,采用加一倍的方法。引入这种改变策略的方式,是为了避免出现过多空闲的存储位置。

原文地址:https://www.cnblogs.com/sincere-ye/p/12153129.html

时间: 2024-07-29 13:09:44

2. 顺序表 数据结构与算法(python)的相关文章

数据结构与算法 Python语言描述 笔记

数据结构 线性表包括顺序表和链表,python的list是顺序表,链表一般在动态语言中不会使用.不过链表还是会出现在各种算法题中. 链表: 单链表 双链表 循环单链表 字符串 有一个重要的点就是字符串的匹配问题,其中比较重要的是无回溯匹配算法(KMP算法),算法比较复杂,重要的思想在于匹配过程中不回溯.实际复杂度是O(m+n), m和n分别是匹配模式串和目标串,一般m<<n. 通配符 *和? * 匹配任意一个字符串 ?匹配任意一个字符 正则表达式 原始字符串:在字符串前面加r前缀,\不作为转义

C#顺序表(数据结构)

xmfdsh我近来心情实在不好,只因为这两天课比较少,然后一下子时间太多,不知道干什么,心情郁闷......这是要闹哪样?这都让我一个郁闷了一个晚上.闲来无聊,回顾下之前学的C#数据结构,数据结构的重要性无论是对于哪门语言都是很必要也很重要的,课程中老师教的C语言,然后我自己自学的C#,再自学了C#的数据结构,对比了下,发现C,C++这些有着指针,比较低级点的语言,写起数据结构更加能考验一个人的思维,C#作为一门高级语言,也是有着自己一套数据结构的,这些更深层次的对比等我都学了比较精通再来慢慢对

数据结构与算法+Python语言描述pdf

下载地址:网盘下载 本书基于Python语言介绍了数据结构与算法的基本知识,主要内容包括抽象数据类型和Python面向对象程序设计.线性表.字符串.栈和队列.二叉树和树.集合.排序以及算法的基本知识.本书延续问题求解的思路,从解决问题的目标来组织教学内容,注重理论与实践的并用. 下载地址:网盘下载 原文地址:https://www.cnblogs.com/cf3276625841/p/9325994.html

顺序表的冒泡排序算法及二分法查找代码实现

本文主要实现了比较经典的冒泡排序算法(对已经有序或者基本有序的顺序表复杂度大大降低),和二分法查找,各位看官看代码吧 //冒泡排序算法及二分法查找 #include "stdio.h" typedef struct { int key; }SSTable_Elem_Type; typedef struct { SSTable_Elem_Type*elem; int length; }SSTable_Typedef; void Bubble_Sort(SSTable_Typedef*ST

顺序表之插入算法

public class text{    public static void main(String[] args) {        int[] alist=new int[10];        alist[0]=14;        alist[1]=55;        alist[2]=101;        alist[3]=256;        insert(alist, 88, 1);        insert(alist, 34, 2);        insert(a

《数据结构与算法Python语言描述》习题第二章第三题(python版)

ADT Rational: #定义有理数的抽象数据类型 Rational(self, int num, int den) #构造有理数num/den +(self, Rational r2) #求出本对象加r2的结果 -(self, Rational r2) #求出本对象减r2的结果 *(self, Rational r2) #求出本对象乘以r2的结果 /(self, Rational r2) #求出本对象除以r2的结果 num(self) #取出本对象的分子 den(self) #取出本对象的

《数据结构与算法Python语言描述》习题第二章第二题(python版)

ADT Date: #定义日期对象的抽象数据类型 Date(self, int year, int month, int day) #构造表示year/month/day的对象 difference(self, Date d2) #求出self和d2的日期差 plus(self, int n) #计算出日期第self之后n天的日期 num_date(self, int year, int n) #计算year年第n天的日期 adjust(self, int n) #将日期d调整n天(n为带符号整

数据结构与算法 Python语言实现 第四章练习

巩固 1 # R-4.1 2 def find_max(data): 3 n = len(data) 4 if n == 1: 5 return data[0] 6 elif data[0] > data[1]: 7 data.pop(1) 8 elif data[0] < data[1]: 9 data.pop(0) 10 return find_max(data) 11 12 13 # print(find_max([1, 2, 3, 4, 6, 5])) 14 # 时间:O(n) 空间:

数据结构与算法 Python语言描述_裘宗燕

链接:https://pan.baidu.com/s/14WDWBy9q84nyGnWOAWP7Mw 密码:x0kc 原文地址:https://www.cnblogs.com/luoshuifusheng/p/9442382.html