一次jvm调优过程

jvm调优实战

前端时间把公司的一个分布式定时调度的系统弄上了容器云,部署在kubernetes,在容器运行的动不动就出现问题,特别容易jvm溢出,导致程序不可用,终端无法进入,日志一直在刷错误,kubernetes也没有将该容器自动重启。业务方基本每天都在反馈task不稳定,后续就协助接手看了下,先主要讲下该程序的架构吧。
该程序task主要分为三个模块:
console进行一些cron的配置(表达式、任务名称、任务组等);
schedule主要从数据库中读取配置然后装载到quartz再然后进行命令下发;
client接收任务执行,然后向schedule返回运行的信息(成功、失败原因等)。
整体架构跟github上开源的xxl-job类似,也可以参考一下。

1. 启用jmx和远程debug模式

容器的网络使用了BGP,打通了公司的内网,所以可以直接通过ip来进行程序的调试,主要是在启动的jvm参数中添加:

JAVA_DEBUG_OPTS=" -Xdebug -Xnoagent -Djava.compiler=NONE -Xrunjdwp:transport=dt_socket,address=0.0.0.0:8000,server=y,suspend=n "
JAVA_JMX_OPTS=" -Dcom.sun.management.jmxremote.port=1099 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false "

其中,调试模式的address最好加上0.0.0.0,有时候通过netstat查看端口的时候,该位置显示为127.0.0.1,导致无法正常debug,开启了jmx之后,可以初步观察堆内存的情况。

堆内存(特别是cms的old gen),初步看代码觉得是由于用了大量的map,本地缓存了大量数据,怀疑是每次定时调度的信息都进行了保存。

2. memory analyzer、jprofiler进行堆内存分析

先从容器中dump出堆内存

jmap -dump:live,format=b,file=heap.hprof 58

由图片可以看出,这些大对象不过也就10M,并没有想象中的那么大,所以并不是大对象的问题,后续继续看了下代码,虽然每次请求都会把信息放进map里,如果能正常调通的话,就会移除map中保存的记录,由于是测试环境,执行端很多时候都没有正常运行,甚至说业务方关闭了程序,导致调度一直出现问题,所以map的只会保留大量的错误请求。不过相对于该程序的堆内存来说,不是主要问题。

3. netty的方面的考虑

另一个小伙伴一直怀疑的是netty这一块有错误,着重看了下。该程序用netty自己实现了一套rpc,调度端每次进行命令下发的时候都会通过netty的rpc来进行通信,整个过程逻辑写的很混乱,下面开始排查。
首先是查看堆内存的中占比:

可以看出,io.netty.channel.nio.NioEventLoop的占比达到了40%左右,再然后是io.netty.buffer.PoolThreadCache,占比大概达到33%左右。猜想可能是传输的channel没有关闭,还是NioEventLoop没有关闭。再跑去看一下jmx的线程数:

达到了惊人的1000个左右,而且一直在增长,没有过下降的趋势,再次猜想到可能是NioEventLoop没有关闭,在代码中全局搜索NioEventLoop,找到一处比较可疑的地方。

声明了一个NioEventLoopGroup的成员变量,通过构造方法进行了初始化,但是在执行syncRequest完之后并没有进行对group进行shutdownGracefully操作,外面对其的操作并没有对该类的group对象进行关闭,导致线程数一直在增长。

最终解决办法:
在调用完syncRequest方法时,对ChannelBootStrap的group对象进行行shutdownGracefully

提交代码,容器中继续测试,可以基本看出,线程基本处于稳定状态,并不会出现一直增长的情况了

还原本以为基本解决了,到最后还是发现,堆内存还算稳定,但是,直接内存依旧打到了100%,虽然程序没有挂掉,所以,上面做的,可能仅仅是为这个程序续命了而已,感觉并没有彻底解决掉问题。

4. 直接内存排查

第一个想到的就是netty的直接内存,关掉,命令如下:

-Dio.netty.noPreferDirect=true -Dio.netty.leakDetectionLevel=advanced

查看了一下java的nio直接内存,发现也就几十kb,然而直接内存还是慢慢往上涨。毫无头绪,然后开始了自己的从linux层面开始排查问题

5. 推荐的直接内存排查方法

5.1 pmap

一般配合pmap使用,从内核中读取内存块,然后使用views 内存块来判断错误,我简单试了下,乱码,都是二进制的东西,看不出所以然来。

pmap -d 58  | sort -n -k2
pmap -x 58  | sort -n -k3
grep rw-p /proc/$1/maps | sed -n 's/^\([0-9a-f]*\)-\([0-9a-f]*\) .*$/\1 \2/p' | while read start stop; do gdb --batch --pid $1 -ex "dump memory $1-$start-$stop.dump 0x$start 0x$stop"; done

这个时候真的懵了,不知道从何入手了,难道是linux操作系统方面的问题?

5.2 [gperftools](https://github.com/gperftools/gperftools

起初,在网上看到有人说是因为linux自带的glibc版本太低了,导致的内存溢出,考虑一下。初步觉得也可能是因为这个问题,所以开始慢慢排查。oracle官方有一个jemalloc用来替换linux自带的,谷歌那边也有一个tcmalloc,据说性能比glibc、jemalloc都强,开始换一下。
根据网上说的,在容器里装libunwind,然后再装perf-tools,然后各种捣鼓,到最后发现,执行不了,

pprof --text /usr/bin/java java_58.0001.heap

看着工具高大上的,似乎能找出linux的调用栈,

6. 意外的结果

毫无头绪的时候,回想到了linux的top命令以及日志情况,测试环境是由于太多执行端业务方都没有维护,导致调度系统一直会出错,一出错就会导致大量刷错误日志,平均一天一个容器大概就有3G的日志,cron一旦到准点,就会有大量的任务要同时执行,而且容器中是做了对io的限制,磁盘也限制为10G,导致大量的日志都堆积在buff/cache里面,最终直接内存一直在涨,这个时候,系统不会挂,但是先会一直显示内存使用率达到100%。
修复后的结果如下图所示:

总结

定时调度这个系统当时并没有考虑到公司的系统会用的这么多,设计的时候也仅仅是为了实现上千的量,没想到到最后变成了一天的调度都有几百万次。最初那批开发也就使用了大量的本地缓存map来临时存储数据,然后面向简历编程各种用netty自己实现了通信的方式,一堆坑都留给了后人。目前也算是解决掉了一个由于线程过多导致系统不可用的情况而已,但是由于存在大量的map,系统还是得偶尔重启一下比较好。

参考:
1.记一次线上内存泄漏问题的排查过程
2.Java堆外内存增长问题排查Case
3.Troubleshooting Native Memory Leaks in Java Applications

原文地址:https://www.cnblogs.com/w1570631036/p/12220831.html

时间: 2024-10-25 16:10:14

一次jvm调优过程的相关文章

jvm参数解析(含调优过程)

前阵       对底层账单系统进行了压测调优,调优的最后一步--jvm启动参数中,减小了线程的堆栈空间:-XX:ThreadStackSize=256K,缩减至原来的四分之一,效果明显,不过并没有调试其他内存空间及gc相关参数.这次有机会在实际压测中,调优这一部分内容,笔者以cms收集器为例,将有.无调优配置情况下的压测结果进行对比,来分析各项调用参数的意义及效果. 准备工作: 1.调用查询接口的测试jar包,作为dubbo-consumer,依赖了查询服务的api,测试module基于mav

第九章 JVM调优推荐

说明:本文主要参考自<分布式Java应用:基础与实践> 1.JVM的调优主要是内存的调优,主要调两个方面: 各个代的大小 垃圾收集器选择 2.各个代的大小 常用的调节参数 -Xmx -Xms -Xmn -XX:SurvivorRatio -XX:MaxTenuringThreshold -XX:PermSize -XX:MaxPermSize 原则 -Xmx==-Xms:防止堆内存频繁进行调整,调整的时机见<第一章 JVM内存结构> -Xmn:通常设为-Xmx/4(这是我在企业中实

Tomcat的JVM调优实战

一些调优点在上篇日志中已写到,在此不做说明 直接使用Jmeter进行调优测试吞吐量Code package cn; import java.io.IOException; import java.util.Map; import java.util.WeakHashMap; import javax.servlet.ServletException; import javax.servlet.annotation.WebServlet; import javax.servlet.http.Htt

JVM 调优 —— 新生代 Survivor 空间不足

零. 新生代调优规律 增大新生代空间, Minor GC 频率减少, Minor GC 时间上升. 减少新生代空间, Minor GC 频率上升, Minor GC 时间下降 一. 新生代典型问题 先看一段 GC 日志:新生代使用 ParNew, 老年代使用 CMS {Heap before GC invocations=0 (full 0): par new generation total 943744K, used 838912K [0x0000000757000000, 0x000000

JVM调优总结(五)-分代垃圾回收详述1

为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象.线程.Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长.但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至

【转 】JVM调优 网上一篇很好的文章 (复制摘要了 一边参考 )

为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象,其中有些对象是与业务信息相关,比如Http请求中的Session对象.线程.Socket连接,这类对象跟业务直接挂钩,因此生命周期比较长.但是还有一些对象,主要是程序运行过程中生成的临时变量,这些对象生命周期会比较短,比如:String对象,由于其不变类的特性,系统会产生大量的这些对象,有些对象甚至

转: jvm调优参数总结

JVM里的GC(Garbage Collection)的算法有很多种,如标记清除收集器,压缩收集器,分代收集器等等,详见HotSpot VM GC 的种类 现在比较常用的是分代收集(generational collection,也是SUN VM使用的,J2SE1.2之后引入),即将内存分为几个区域,将不同生命周期的对象放在不同区域里:young generation,tenured generation和permanet generation.绝大部分的objec被分配在young gener

JVM调优浅谈

1.数据类型 java虚拟机中,数据类型可以分为两类:基本类型和引用类型.基本类型的变量保存原始值,即:它代表的值就是数值本身,而引用类型的变量保存引用值.“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置. 基本类型包括:byte.short.int.long.char.float.double.boolean.returnAddress 引用类型包括:类类型.接口类型和数组 2.堆与栈 堆和栈是程序运行的关键,很有必要它他们的关系说清楚. 栈是运行时的

jvm 调优

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.这些区域都有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进程的启动而存在,有些区域则是依赖用户线程的启动和结束而建立和销毁.根据<Java虚拟机规范(第2版)>的规定,Java虚拟机所管理的内存将会包括以下几个运行时数据区域,虚拟机栈.本地方法栈.程序计数器为线程私有部分,虚拟机堆.方法区为共享部分),见下图: 程序计数器 程序计数器(Program Counter Register)是一块较小的内存