Celery架构

cerely是什么?

  cerely被用来稍后执行某些代码,或者调度器调度这些代码。

Celery架构

  Celery的架构由三部分组成,消息中间件(message broker)、任务执行单元(worker)和 任务执行结果存储(backend - task result store)组成。

消息中间件

  Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括,RabbitMQ, Redis等等

任务执行单元

  Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。

任务结果存储

  Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等

总结:

"""
1、celery框架自带socket,所以自身是一个独立运行的服务
2、启动celery服务,是来执行服务中的任务的,服务中带一个执行任务的对象,会执行准备就绪的任务,将执行任务的结果保存起来
3、celery框架由三部分组成:存放要执行的任务broker,执行任务的对象worker,存放任务结果的backend
4、安装的celery主体模块,默认只提供worker,要结合其他技术提供broker和backend(两个存储的单位)
"""

工作的基本原理

1、准备配置了broker与backend的worker(任务的来源),并启动。

2、添加任务到broker,worker就会执行任务,将结果存储到backend中。

3、想查看任务的执行结果,根据任务的id去bckend中查询。

Celery的安装配置

pip install celery

消息中间件:RabbitMQ/Redis

app=celery.Celery(‘任务名‘, broker=‘xxx‘, backend=‘xxx‘, include=[‘xxx‘, ‘xxx‘])

Celery执行异步任务

包架构封装

project
    ├── celery_task      # celery包
    │   ├── __init__.py # 包文件
    │   ├── celery.py   # celery连接和配置相关文件,且名字必须交celery.py
    │   └── tasks.py    # 所有任务函数
    ├── add_task.py      # 添加任务
    └── get_result.py   # 获取结果

基本使用

celery.py

# 1)创建app + 任务

# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet

# 3)添加任务:手动添加,要自定义添加任务的脚本,右键执行脚本

# 4)获取结果:手动获取,要自定义获取任务的脚本,右键执行脚本

from celery import Celery

broker = ‘redis://127.0.0.1:6379/1‘
backend = ‘redis://127.0.0.1:6379/2‘
app = Celery(broker=broker, backend=backend, include=[‘celery_task.tasks‘])

tasks.py

from .celery import app
import time
@app.task
def add(n, m):
    print(n)
    print(m)
    time.sleep(10)
    print(‘n+m的结果:%s‘ % (n + m))
    return n + m

@app.task
def low(n, m):
    print(n)
    print(m)
    print(‘n-m的结果:%s‘ % (n - m))
    return n - m

add_task.py

from celery_task import tasks

# 添加立即执行任务
t1 = tasks.add.delay(10, 20)
t2 = tasks.low.delay(100, 50)
print(t1.id)

# 添加延迟任务
from datetime import datetime, timedelta
def eta_second(second):
    ctime = datetime.now()
    utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
    time_delay = timedelta(seconds=second)
    return utc_ctime + time_delay

tasks.low.apply_async(args=(200, 50), eta=eta_second(10))

get_result.py

from celery_task.celery import app

from celery.result import AsyncResult

id = ‘21325a40-9d32-44b5-a701-9a31cc3c74b5‘
if __name__ == ‘__main__‘:
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print(‘任务失败‘)
    elif async.status == ‘PENDING‘:
        print(‘任务等待中被执行‘)
    elif async.status == ‘RETRY‘:
        print(‘任务异常后正在重试‘)
    elif async.status == ‘STARTED‘:
        print(‘任务已经开始被执行‘)

高级使用

celery.py
# 1)创建app + 任务
?
# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet
?
# 3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat -A celery_task -l info
?
# 4)获取结果
?
?
from celery import Celery
?
broker = ‘redis://127.0.0.1:6379/1‘
backend = ‘redis://127.0.0.1:6379/2‘
app = Celery(broker=broker, backend=backend, include=[‘celery_task.tasks‘])
?
?
# 时区
app.conf.timezone = ‘Asia/Shanghai‘
# 是否使用UTC
app.conf.enable_utc = False
?
# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    ‘low-task‘: {
        ‘task‘: ‘celery_task.tasks.low‘,
        ‘schedule‘: timedelta(seconds=3),
        # ‘schedule‘: crontab(hour=8, day_of_week=1),  # 每周一早八点
        ‘args‘: (300, 150),
    }
}

tasks.py

from .celery import app
?
import time
@app.task
def add(n, m):
    print(n)
    print(m)
    time.sleep(10)
    print(‘n+m的结果:%s‘ % (n + m))
    return n + m
?
?
@app.task
def low(n, m):
    print(n)
    print(m)
    print(‘n-m的结果:%s‘ % (n - m))
    return n - m

get_result.py

from celery_task.celery import app
?
from celery.result import AsyncResult
?
id = ‘21325a40-9d32-44b5-a701-9a31cc3c74b5‘
if __name__ == ‘__main__‘:
    async = AsyncResult(id=id, app=app)
    if async.successful():
        result = async.get()
        print(result)
    elif async.failed():
        print(‘任务失败‘)
    elif async.status == ‘PENDING‘:
        print(‘任务等待中被执行‘)
    elif async.status == ‘RETRY‘:
        print(‘任务异常后正在重试‘)
    elif async.status == ‘STARTED‘:
        print(‘任务已经开始被执行‘)
 

django中使用

celery.py

# 重点:要将 项目名.settings 所占的文件夹添加到环境变量
# import sys
# sys.path.append(r‘项目绝对路径‘)
?
# 开启django支持
import os
os.environ.setdefault(‘DJANGO_SETTINGS_MODULE‘, ‘项目名.settings‘)
import django
django.setup()
?
?
?
# 1)创建app + 任务
?
# 2)启动celery(app)服务:
# 非windows
# 命令:celery worker -A celery_task -l info
# windows:
# pip3 install eventlet
# celery worker -A celery_task -l info -P eventlet
?
# 3)添加任务:自动添加任务,所以要启动一个添加任务的服务
# 命令:celery beat -A celery_task -l info
?
# 4)获取结果
?
?
from celery import Celery
?
broker = ‘redis://127.0.0.1:6379/1‘
backend = ‘redis://127.0.0.1:6379/2‘
app = Celery(broker=broker, backend=backend, include=[‘celery_task.tasks‘])
?
?
# 时区
app.conf.timezone = ‘Asia/Shanghai‘
# 是否使用UTC
app.conf.enable_utc = False
?
# 任务的定时配置
from datetime import timedelta
from celery.schedules import crontab
app.conf.beat_schedule = {
    ‘django-task‘: {
        ‘task‘: ‘celery_task.tasks.test_django_celery‘,
        ‘schedule‘: timedelta(seconds=3),
        ‘args‘: (),
    }
}

tasks.py

from .celery import app
?
from home.models import Banner
from settings.const import BANNER_COUNT  # 轮播图最大显示条数
from home.serializers import BannerModelSerializer
from django.core.cache import cache
@app.task
def update_banner_list():
    # 获取最新内容
    banner_query = Banner.objects.filter(is_delete=False, is_show=True).order_by(‘-orders‘)[:BANNER_COUNT]
    # 序列化
    banner_data = BannerModelSerializer(banner_query, many=True).data
    for banner in banner_data:
        banner[‘image‘] = ‘http://127.0.0.1:8000‘ + banner[‘image‘]
    # 更新缓存
    cache.set(‘banner_list‘, banner_data)
    return True


原文地址:https://www.cnblogs.com/Gaimo/p/11774506.html

时间: 2024-10-03 06:27:56

Celery架构的相关文章

异步任务队列Celery在Django中的使用

前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务.在同事的指引下接触了Celery这个异步任务队列框架,鉴于网上关于Celery和Django结合的文档较少,大部分也只是粗粗介绍了大概的流程,在实践过程中还是遇到了不少坑,希望记录下来帮助有需要的朋友. 一.Django中的异步请求 Django Web中从一个http请求发起,到获得响应返回html页面的流程大致如下:http请求发起 --

celery简介

Celery简介 [toc] celery userguide 知乎大神解释celery Celery(芹菜)是基于Python开发的分布式任务队列.它支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度. Celery架构 架构图如下: Celery包括如下组件: Celery Beat 任务调度器,Beat进程会读取配置文件的内容,周期性的将配置中到期需要执行的任务发送给任务队列 celery Worker 执行任务的消费者,通常会在多台服务器运行多个消费者来提高执行效率 Broke

celery执行异步任务和定时任务

一.什么是Clelery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成. 消息中间件 Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成.包括,RabbitMQ, Redis等等 任务执行单元 Worker是Celery提供

celery haystack

# Celery ## 1.什么是Celery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 ### Celery架构 ![20150314100608_187](C:\Users\Administrator\Desktop\celery和hystack\20150314100608_187.png) Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(ta

Celery完成定时任务

1.什么是Celery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 celery支持linux,如果windows使用celery出了问题不解决 Celery架构 Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成. 消息中间件 Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成.包括,Ra

celery在Django中的使用

前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务.在同事的指引下接触了Celery这个异步任务队列框架,鉴于网上关于Celery和Django结合的文档较少,大部分也只是粗粗介绍了大概的流程,在实践过程中还是遇到了不少坑,希望记录下来帮助有需要的朋友. 一.Django中的异步请求 Django Web中从一个http请求发起,到获得响应返回html页面的流程大致如下:http请求发起 --

Celery—分布式的异步任务处理系统

Celery 1.什么是Clelery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组成: ● 消息中间件(message broker) ● 任务执行单元(worker) ● 任务执行结果存储(task result store) 消息中间件 Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成.包括,RabbitMQ, Redis等等 任务执行单元 Work

Celery分布式任务队列

1.什么是Clelery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成. 消息中间件 Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成.包括,RabbitMQ, Redis等等 任务执行单元 Worker是Celery提供

celery异步框架

一.什么是celery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 二.Celery架构 Celery的架构由三部分组成,消息中间件(message broker).任务执行单元(worker)和 任务执行结果存储(task result store)组成. 2.1 消息中间件 Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成.包括,RabbitMQ, Redis等等 2.2 任务执行单元 Worke