感谢丁爷爷教我做这个题的后半部分。
首先,运用一发容斥原理,求出所有人与B神每门课分数相对关系的不同方案数。
这个似乎大(wo)家(lan)都(de)会(hui)了(yi),我就不说了,详见代码里的f。
然后,我们就需要计算每门课每个人的分数的方案数。对于每一门课,我们分别计算,然后把它们乘起来。
方便起见,令总分为s,名次为rk。
设B神的分数为x,则方案数为x^(n-rk)*(s-x)^(rk-1)
展开得到c(rk-1,0)*s^(rk-1)*x^(n-rk)-c(rk-1,1)*s^(rk-2)*x^(n-rk+1)+c(rk-1,2)*s^(rk-3)*x^(n-rk+2)-........
显然,我们需要对于x=1..s的所有情况求和。
我们把x次数相同的项放在一起,进行一波整理,问题就转化成了求1^k+2^k+...+s^k
我们设g(k)=1^k+2^k+...+s^k,我们列出一波式子然后观察:
(s+1)^k-s^k=c(k,1)*s^(k-1) +c(k,2)*s^(k-2) +...+c(k,k)*s^0
s^k-(s-1)^k=c(k,1)*(s-1)^(k-1)+c(k,2)*(s-1)^(k-2)+...+c(k,k)*(s-1)^0
............................................................................................................
2^k-1^k=c(k,1)*1^(k-1) +c(k,2)*1^(k-2) +...+c(k,k)*1^0
把这些式子全部相加,得到:
(s+1)^k-1=c(k,1)*g(k-1)+c(k,2)*g(k-2)+...+c(k,k)*g(0)
于是就可以通过递推的方式求出g
然后就做完了。
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <cstdlib> #include <algorithm> #define ll long long #define N 103 #define P 1000000007 using namespace std; inline int read(){ int ret=0;char ch=getchar(); while (ch<‘0‘||ch>‘9‘) ch=getchar(); while (‘0‘<=ch&&ch<=‘9‘){ ret=ret*10-48+ch; ch=getchar(); } return ret; } int fast_pow(int x,int y){ int ret=1; while (y){ if (y&1) ret=(ll)ret*x%P; x=(ll)x*x%P; y=y>>1; } return ret; } int bin[N]; int fact[N*100]; int inv[N*100]; int c(int n,int m){ return (ll)fact[n]*inv[m]%P*inv[n-m]%P; } int f[N],g[N]; int person,subject,K; int rank[N],s[N]; int main(){ for (int i=fact[0]=1;i<=1e3;++i) fact[i]=(ll)fact[i-1]*i%P; for (int i=0;i<=1e3;++i) inv[i]=fast_pow(fact[i],P-2); person=read();subject=read();K=read(); for (int i=1;i<=subject;++i) s[i]=read(); int maxrank=0; for (int i=1;i<=subject;++i) maxrank=max(maxrank,rank[i]=read()); for (int i=person-maxrank;i>=K;--i){ f[i]=c(person-1,i); for (int j=1;j<=subject;++j) f[i]=(ll)f[i]*c(person-1-i,rank[j]-1)%P; for (int j=person-maxrank;j>i;--j) (f[i]+=P-(ll)f[j]*c(j,i)%P)%=P; } int res=1; for (int i=1;i<=subject;++i){ g[0]=s[i]; bin[0]=1; for (int j=1;j<=person;++j){ bin[j]=(ll)bin[j-1]*s[i]%P; g[j]=fast_pow(s[i]+1,j+1)-1; for (int k=1;k<=j;++k) (g[j]+=P-(ll)c(j+1,k+1)*g[j-k]%P)%=P; g[j]=(ll)g[j]*fast_pow(c(j+1,1),P-2)%P; } int now=0; for (int j=0,k=1;j<rank[i];++j,k=-k) (now+=((ll)k+P)*c(rank[i]-1,j)%P*g[person-rank[i]+j]%P*bin[rank[i]-j-1]%P)%=P; res=(ll)res*now%P; } printf("%lld\n",(ll)res*f[K]%P); return 0; }