Note for video Machine Learning and Data Mining——training vs Testing

Here is the note for lecture five.

There will be several points

1. Training and Testing

Both of these are about data. Training is using the data to get a fine hypothesis, and testing is not.

If we get a final hypothesis and want to test it, it turns to testing.

2. Another way to verify that learning is feasible. Firstly, let me show you an inequlity.

As it mentions on note 2, in the inequlity, the complexity of your hypothesis can be reflected by M.

However, M is almost meaningless, and because of this, your hypothesis will be useless.
If we can replace

M with another quantity, and the quantity is not meaningless, that means not infinite, and then we can start

our learning in an actual model.(our learning is feasible)

What is M? It mentioned before that M is the maxnum of hypothesis. So can we figure number of hypothesis to

replace M? The answer turns true.

the maxnum of hypothesis are different choice of different points. If the number of uncertain is a, and the number

of choice for uncertain is b, then the maxnum of hypothesis come out, its a^b.

But it seems not smoothly like that, there are several hypothesis could not be built up,
generlly the number of hypothesis

that can be built are less than a^b.

Let‘s come back to the inequlity, we can prove it mathematically that
if M can be replaced by a polynomial, that means the number of hypothesis in a set is not infinite, then we can declare that learning is feasible using this hypothesis set. There is a new statement that wil be proved next lecture, if the maxnum of hypothesis
is less than its max-value, the number of hypothesis could be replaced by a polynimial, that is, learning is feasible using the hypothesis set.

According to above statement, if there are several hypothesis can not be built up, then set for the hypothesis will be feasible for learning.

时间: 2024-10-24 18:19:44

Note for video Machine Learning and Data Mining——training vs Testing的相关文章

Note for video Machine Learning and Data Mining——Linear Model

Here is the note for lecture three. the linear model Linear model is a basic and important model in machine learning. 1. input representation The data we get usually needs some changes, most of them is the input data. In linear model, input =(x1,x2,x

How do you explain Machine Learning and Data Mining to non Computer Science people?

How do you explain Machine Learning and Data Mining to non Computer Science people? Pararth Shah, ML Enthusiast Answered Dec 22, 2012 · Featured on VentureBeat · Upvoted by Melissa Dalis, CS & Math major at Duke and Alberto Bietti, PhD student in mac

Machine learning and data mining

Problems: Classification, Clustering, Regression, Anomaly detection, Association rules, Reinforcement learning, Structurd prediction, Feature learning, Online learning, Semi-supervised learning, Grammar induction Supervised learning: Decision trees,

Machine Learning and Data Science 教授大师

http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu/jeh/bookJan25_2016.pdf

Awesome Machine Learning

Awesome Machine Learning  A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you want to contribute to this list (please do), send me a pull request or contact me @josephmisiti Als

Optimization and Machine Learning(优化与机器学习)

这是根据(ShanghaiTech University)王浩老师的授课所作的整理. 需要的预备知识:数分.高代.统计.优化 machine learning:(Tom M. Mitchell) "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T,

Getting started with machine learning in Python

Getting started with machine learning in Python Machine learning is a field that uses algorithms to learn from data and make predictions. Practically, this means that we can feed data into an algorithm, and use it to make predictions about what might

MSc Data Mining and Machine Learning (2019)

MSc Data Mining and Machine Learning (2019)Lab 4 – Neural NetworksProblemThe challenge is to implement the Error Back-Propagation (EBP) training algorithm for a multilayerperceptron (MLP) 4-2-4 encoder [1] using MatLab (or your language of choice). I

data mining,machine learning,AI,data science,data science,business analytics

数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系? 本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比