Python-Day4 Python基础进阶之生成器/迭代器/装饰器/Json & pickle 数据序列化

一、生成器

  通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [ x*2 for x in range(5)]
>>> L
[0, 2, 4, 6, 8]
>>> g = ( x*2 for x in range(5) )
>>> g
<generator object <genexpr> at 0x000000000321EF68>

  创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
2
>>> next(g)
4
>>> next(g)
6
>>> next(g)
8
>>> next(g)
Traceback (most recent call last):
  File "<pyshell#11>", line 1, in <module>
    next(g)
StopIteration
>>> g
<generator object <genexpr> at 0x000000000321EF68>
>>> g = ( x*2 for x in range(5) )
>>> for n in g:
    print(n)

0
2
4
6
8

  generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。当然,这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象。所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

>>> def fib(max):
    n,a,b = 0,0,1
    while n<max:
        print(b)
        a,b =b,a+b
        n=n+1
    return ‘done‘

>>> fib(10)
1
1
2
3
5
8
13
21
34
55
‘done‘
‘‘‘仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

‘‘‘
>>> def fib(max):
    n,a,b = 0,0,1
    while n<max:
        yield b
        a,b =b,a+b
        n=n+1
    return ‘done‘

>>> f=fib(5)
>>> f
<generator object fib at 0x000000000321EF68>

>>> print(next(f))
1
>>> print(next(f))
1
>>> print(next(f))
2
>>> print(next(f))
3
>>> print(next(f))
5
>>> print(next(f))
Traceback (most recent call last):
  File "<pyshell#49>", line 1, in <module>
    print(next(f))
StopIteration: done

  在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

>>> for n in fib(5):
...     print(n)
...
1
1
2
3
5
‘‘‘
但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:
‘‘‘
>>> g=fib(5)
>>> while True:
    try:
        x=next(g)
        print(‘g:‘,x)
    except StopIteration as e:
        print(‘Generator return value:‘, e.value)
        break

g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

  通过yield实现在单线程的情况下实现并发运算的效果:(暂时保留)

二、迭代器

  迭代是Python最强大的功能之一,是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。

以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance(‘abc‘, Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

*可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance(‘abc‘, Iterator)
False

生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

listdictstrIterable变成Iterator可以使用iter()函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter(‘abc‘), Iterator)
True

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

小结

凡是可作用于for循环的对象都是Iterable类型;

凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

#实际上完全等价于:
# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break

三、装饰器

  理解了好几天,开始写装饰器,先说定义:装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。假设我们要增强一个函数的功能,比如,在函数调用前后自动打印时间,但又不希望修改函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

def use_logging(func):
    print("%s is running" % func.__name__) #_name_获取函数的名字,也就是bar
    func()

def bar():
    print(‘i am bar‘)

use_logging(bar)

‘‘‘执行结果:
bar is running
i am bar
‘‘‘

    逻辑上不难理解, 但是这样的话,我们每次都要将一个函数作为参数传递给use_logging函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行bar(),但是现在不得不改成use_logging(bar)。那么有没有更好的方式的呢?当然有,答案就是装饰器。

1.无参装饰器

import time
def timer(func):
    def deco():
        start_time = time.time()
        func()
        stop_time = time.time()
        print("The func run time is %s" %(stop_time-start_time))
    return deco
@timer #相当于time1=timer(time1)
def time1():
    time.sleep(1)
    print("In the time")
time1()

‘‘‘
In the time
The func run time is 1.0000569820404053
‘‘‘

2.有参装饰器

import time
def timer(timeout=0):
    def decorator(func):
        def wrapper(*args,**kwargs):
            start=time.time()
            func(*args,**kwargs)
            stop=time.time()
            print ‘run time is %s ‘ %(stop-start)
            print timeout
        return wrapper
    return decorator
@timer(2)
def test(list_test):
    for i in list_test:
        time.sleep(0.1)
        print ‘-‘*20,i

#timer(timeout=10)(test)(range(10))
test(range(10))

四、Json & pickle 数据序列化

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

Json模块提供了四个功能:dumps、dump、loads、load

pickle模块提供了四个功能:dumps、dump、loads、load

待续。。。。

时间: 2024-09-28 18:21:18

Python-Day4 Python基础进阶之生成器/迭代器/装饰器/Json & pickle 数据序列化的相关文章

Day4 - 迭代器&amp;生成器、装饰器、Json &amp; pickle 数据序列化、软件目录结构规范

---恢复内容开始--- 本节内容 迭代器&生成器 装饰器 Json & pickle 数据序列化 软件目录结构规范 作业:ATM项目开发 1.列表生成式,迭代器&生成器 列表生成式 需求:列表a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],要求把列表里的每个值加1 1 a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 2 b = [] 3 for i in a: 4 b.append(i+1) 5 a = b 6 print(a) 普通青

Python学习笔记——基础篇【第五周】——json &amp; pickle 模块

json & pickle 模块(序列化) 用于序列化的两个模块 json,用于字符串 和 python数据类型间进行转换 pickle,用于python特有的类型 和 python的数据类型间进行转换 Json模块提供了四个功能:dumps.dump.loads.load pickle模块提供了四个功能:dumps.dump.loads.load dumps和dump区别: pickle.dump(info,f) #print(pickle.dumps(info)) #f.write(pick

Python之路(六):迭代器,装饰器,生成器

python基础之迭代器和生成器 迭代器 迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个Stoplteration异常,以终止迭代(只能往后走不能往前退) 实现了迭代器协议的对象(对象内部定义了一个__iter__()方法) python中的内部工具(如for循环,sum,min,max函数等)基于迭代器协议访问对象. 1 #基于迭代器协议 2 li = [1,2,3] 3 diedai_l = li.__iter__() 4 print(died

Python之路-python(装饰器、生成器、迭代器、Json &amp; pickle 数据序列化、软件目录结构规范)

装饰器: 首先来认识一下python函数, 定义:本质是函数(功能是装饰其它函数),为其它函数添加附件功能        原则:        1.不能修改被装饰的函数的源代码.        2.不能修改被装饰的函数的调用方式. 1 def test(): 2 print('test') 3 print(test ) #表示是函数 4 test() #表示执行foo函数 <function test at 0x00595660>#表示的是函数的内存地址test#函数test执行结果 简单的装

python day4笔记 常用内置函数与装饰器

1.常用的python函数 abs             求绝对值 all               判断迭代器中所有的数据是否为真或者可迭代数据为空,返回真,否则返回假 any             判断迭代器中的数据是否有一个为真,有返回真,可迭代数据为空或者没有真,返回假 bin             转换整数为二进制字符串 hex            转换整数为十六进制字符串 oct             转换整数为八进制字符串 bool           转换数据为布尔值

装饰器、生成器,迭代器、Json &amp; pickle 数据序列化

1. 列表生成器:代码例子 1 a=[i*2 for i in range(10)] 2 print(a) 3 4 运行效果如下: 5 D:\python35\python.exe D:/python培训/s14/day4/列表生成式.py 6 [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] 7 8 Process finished with exit code 0 2.高阶函数 变量可以指向函数,函数的参数能接受变量,即把一个函数名当做实参传给另外一个函数 返回值中包涵

模块调用,datetime,time,logging,递归,双层装饰器, json,pickle迭代器和生成器

一.python模块(导入,内置,自定义,开源) 1.模块简介 模块是一个包含所有你定义的函数和变量的文件,其后缀名是.py.模块可以被别的程序引入,以使用该模块中的函数等功能.这也是使用python标准库的方法. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才能完成(函数又可以在不同的.py文件中),n个 .py 文件组成的代码集合就称为模块. 2.模块的引入 在Python中用关键字

【十】迭代器、生成器、装饰器和标准库

一:迭代器 在python中,很多对象可以直接通过for语句来直接遍历,例如:list.string.dict等等,这些被称为可迭代对象 迭代器是一个可以I记住遍历的位置的对象. 在python中,支持迭代器协议的就是实现对象的iter()和next()方法. iter()方法返回迭代器本身 next()方法返回容器的下一个元素 在结尾时引发stopiteration异常 迭代器有两个基本的方法:__iter__()和next()方法,一个用来获取迭代器对象,一个用来获取容器中的下一个元素 In

Python自动化运维之6、函数装饰器

装饰器: 装饰器可以使函数执行前和执行后分别执行其他的附加功能,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator),装饰器的功能非常强大.装饰器一般接受一个函数对象作为参数,以对其进行增强 装饰器本身是一个函数,用于装饰其他函数 功能:增强被装饰函数的功能 装饰器是一个闭包函数是嵌套函数,通过外层函数提供嵌套函数的环境 装饰器在权限控制,增加额外功能如日志,发送邮件用的比较多 装饰器知识准备一: >>> def f1(): ... print("hel