深度学习与自然语言处理之五:从RNN到LSTM

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/

author: 张俊林

大纲如下:

1.RNN

2.LSTM

3.GRN

4.Attention Model

5.应用

6.探讨与思考

扫一扫关注微信号:“布洛卡区” ,深度学习在自然语言处理等智能应用的技术研讨与科普公众号。

时间: 2025-01-01 15:05:16

深度学习与自然语言处理之五:从RNN到LSTM的相关文章

转:深度学习与自然语言处理之五:从RNN到LSTM

原文地址:http://blog.csdn.net/malefactor/article/details/50436735/ 大纲如下: 1.RNN 2.LSTM 3.GRN 4.Attention Model 5.应用 6.探讨与思考

斯坦福大学深度学习与自然语言处理第一讲:引言

斯坦福大学在三月份开设了一门"深度学习与自然语言处理"的课程:CS224d: Deep Learning for Natural Language Processing ,授课老师是青年才俊Richard Socher,他本人是德国人,大学期间涉足自然语言处理,在德国读研时又专攻计算机视觉,之后在斯坦福大学攻读博士学位,拜师NLP领域的巨牛 Chris Manning和Deep Learning 领域的巨牛 Andrew Ng ,其博士论文是< Recursive Deep Le

斯坦福大学深度学习与自然语言处理第一讲

我学习自然语言是从Christopher D.Manning的统计自然语言处理基础这本书开始的,很多文本分析也是应用统计方法,或者机器学习的方法,而近年来深度学习逐渐渗入各个领域,其在自然语言处理领域中也取得了令人惊叹的效果,这成功的引起了我的重视,决定学习一下.何其所幸,让我找到了斯坦福大学深度学习与自然语言的课程,深得我心啊,所以打算好好学习一下,鉴于我爱自然语言处理中有相关课程的slides,我就直接复制粘贴了,接下来打算做的工作是对该课程中推荐阅读的部分论文做一些笔记.本人才疏学浅,专业

深度学习与自然语言处理之四:卷积神经网络模型(CNN)

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 大纲如下: 1.CNN基础模型 2.单CNN模型的改进    2.1对输入层的改进    2.2Convolution层的改进    2.3Sub-Sampling层的改进    2.4全连接层的改进 3.多CNN模型的改进 4.探讨与思考 扫一扫关注微信号:"布洛卡区" ,深度学习在自然语言处理等智能应用的技术研讨与科普公众号.

深度学习在自然语言处理的应用(Version 0.76)

/* 版权声明:可以任意转载,转载时请务必标明文章原始出处和作者信息 .*/ Author:   张俊林 TimeStamp:2014-10-3 主要对最近两年深度学习在自然语言处理的应用方法和技术进行了综述性的归纳,相关的PPT内容请参考这个链接,这里列出主要提纲. 大纲 ?深度学习简介 ?基础问题:语言表示问题 –Word Embedding –不同粒度语言单元的表示 ?字符/单字/单词/短语/句子/文档 ?值得重点关注的深度学习模型 –RAE(Recursive AutoEncoders)

深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答

深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 作业内容翻译:@胡杨([email protected]) && @胥可([email protected]) 解答与编排:寒小阳 && 龙心尘 时间:2016年6月 出处: http://blog.csdn.net/han_xiaoyang/article/details/51760923 http://blog.csdn.net/longxinchen_ml/article/details/51765

深度学习与自然语言处理(3)_斯坦福cs224d Lecture 3

原文作者:Rohit Mundra, Richard Socher 原文翻译:@熊杰([email protected]) && @王昱森([email protected]) && @范筑军老师( [email protected]) && @OWEN([email protected]) 内容校正:寒小阳 && 龙心尘 时间:2016年6月 出处:http://blog.csdn.net/han_xiaoyang/article/deta

斯坦福大学深度学习与自然语言处理第二讲

第二讲:简单的词向量表示:word2vec, Glove(Simple Word Vector representations: word2vec, GloVe) 转载请注明出处及保留链接“我爱自然语言处理”:http://www.52nlp.cn 本文链接地址:斯坦福大学深度学习与自然语言处理第二讲:词向量 推荐阅读材料: Paper1:[Distributed Representations of Words and Phrases and their Compositionality]]

《基于深度学习的自然语言处理》中文PDF+英文PDF+学习分析

我们做自然语言处理的,主要是进行文本分析,作为人工智能的领域之一,也一定会应用深度神经网络进行处理. 近年来快速发展的深度学习技术为解决自然语言处理问题的解决提供了一种可能的思路,已成为有效推动自然语言处理技术发展的变革力量. <基于深度学习的自然语言处理>重点介绍了神经网络模型在自然语言处理中的应用.首先介绍有监督的机器学习和前馈神经网络的基本知识,如何将机器学习方法应用在自然语言处理中,以及词向量表示(而不是符号表示)的应用,然后介绍了更多专门的神经网络结构,包括一维卷积神经网络.循环神经