Distinctive Image Features from Scale-Invariant

http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf

Abstract

This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

时间: 2024-11-17 04:28:56

Distinctive Image Features from Scale-Invariant的相关文章

Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍

Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它.网上找了好多找不到中译本,那就自己动手丰衣足食吧,顺便造福后人,花时间翻译啃下来并做一个笔记在这吧. ---------------------------------------------------------------------------------------------------

Distinctive Image Features from Scale-Invariant Keypoints 翻译

从尺度不变的关键点选择可区分的图像特征 David G.Lowe 温哥华不列颠哥伦比亚省加拿大英属哥伦比亚大学计算机科学系 [email protected] 2003年1月10日接受,2004年1月7日修改,2004年1月22日采用   摘要:本文提出了一种从图像中提取独特不变特征的方法,可用于完成不同视角之间目标或场景的可靠匹配的方法.这种特征对图像的尺度和旋转具有不变性.并跨越很大范围的对仿射变换,三维视点的变化,添加的噪音和光照变化的图像匹配具有鲁棒性.特征是非常鲜明的,场景中的一个单一

Scale Space(zz Wiki)

Scale space From Wikipedia, the free encyclopedia Scale space Scale-space axioms Scale-space implementation Feature detection Edge detection Blob detection Corner detection Ridge detection Interest point detection Scale selection Affine shape adaptat

Behavior Recognition via Sparse Spatio-Temporal Features 基于稀疏时空特征点的运动识别

Duanxx的论文阅读: Behavior Recognition via Sparse Spatio-Temporal Features 基于稀疏时空特征点的运动识别 ——Duanxx ——2015-04-24 1.Inreoduction In this work we develop a general framework for detecting and characterizing behavior from video sequences, making few underlyin

【Paper Reading】Object Recognition from Scale-Invariant Features

Paper: Object Recognition from Scale-Invariant Features Sorce: http://www.cs.ubc.ca/~lowe/papers/iccv99.pdf SIFT 即Scale Invariant Feature Transfrom, 尺度不变变换,由David Lowe提出.是CV最著名也最常用的特征.在图像目标识别的应用中,常常要求图像的特征有很好的roboust即不容易受到平移,旋转,尺度缩放,光照,仿射的英雄.SIFT算子具有

Local Features

局部特征入门 局部特征(local features),是近来研究的一大热点.大家都了解全局特征(global features),就是方差.颜色直方图等等.如果用户对整个图像的整体感兴趣,而不是前景本身感兴趣的话,全局特征用来描述总是比较合适的.但是无法分辨出前景和背景却是全局特征本身就有的劣势,特别是在我们关注的对象受到遮挡等影响的时候,全局特征很有可能就被破坏掉了.而所谓局部特征,顾名思义就是一些局部才会出现的特征,这个局部,就是指一些能够稳定出现并且具有良好的可区分性的一些点了.这样在物

SIFT Features

Scale Invariant Feature Transform (SIFT) is an approach for detecting and extracting local feature descriptors that are reasonably invariant to change in illumination, image noise, rotation, scaling, and small changes in viewpoint. SIFT是一种可以检测并计算出对于在

An Analysis of Scale Invariance in Object Detection – SNIP 论文解读

前言 本来想按照惯例来一个overview的,结果看到一篇十分不错而且详细的介绍,因此copy过来,自己在前面大体总结一下论文,细节不做赘述,引用文章讲得很详细. 论文概述 引用文章 以下内容来自:http://lowrank.science/SNIP/ 这篇日志记录一些对下面这篇 CVPR 2018 Oral 文章的笔记. Singh B, Davis L S. An Analysis of Scale Invariance in Object Detection–SNIP[C]//Proce

Aggregating local features for Image Retrieval

Josef和Andrew在2003年的ICCV上发表的论文[10]中,将文档检索的方法借鉴到了视频中的对象检测中.他们首先将图像的特征描述类比成单词,并建立了基于SIFT特征的vusual word dictionary,结合停止词.TF-IDF和余弦相似度等思想检索包含相同对象的图像帧,最后基于局部特征的匹配和空间一致性完成了对象的匹配.文档检索与计算机视觉之间渊源颇深,在CV领域常常会遇到要将图像的多个局部特征描述融合为一条特征向量的问题,比如常用的BoVW.VLAD和Fisher Vect