Given a positive integer n, find the least number of perfect square numbers (for example, 1,
) which sum to n.
4, 9, 16, ...
For example, given n = 12
, return 3
because 12
; given n =
= 4 + 4 + 413
, return 2
because 13
.
= 4 + 9
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
Subscribe to see which companies asked this question.
给定一个正整数,求该正整数可以被被分解成完全平方数的个数。
For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9.
采用动态规划的思想。
如果n为完全平方数,则f[n]=1;
否则f(n) = min{f(k)+f(n-k)},1<=k<=n/2
/** * 给定一个正整数,求该正整数可以被被分解成完全平方数的个数。 * For example, given n = 12, return 3 because 12 = 4 + 4 + 4; given n = 13, return 2 because 13 = 4 + 9. * 采用动态规划的思想。 * 如果n为完全平方数,则f[n]=1; * 否则f(n) = min{f(k)+f(n-k)},1<=k<=n/2 * @date 20160510 * @param n * @return */ public int numSquares(int n) { if(n == 1){ return 1; } int f[] = new int[n+1];//f[i]表示给定i时其对应的符合条件的完全平方数个数。 f[1]=1; for(int i=2;i<=n;i++){ /*首先判断是否为一个完全平方数*/ double y = Math.sqrt(i); if( y - (int)y == 0){ f[i] = 1; continue; } /*不为完全平方数时*/ f[i] = f[1]+f[i-1]; for(int k=2;k<=i/2;k++){ if(f[k]+f[i-k]<f[i]){ f[i] = f[k]+f[i-k]; } } } return f[n]; }
时间: 2024-11-13 08:01:07