P3377 【模板】左偏树(可并堆)

P3377 【模板】左偏树(可并堆)

题目描述

如题,一开始有N个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:

操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆内,则无视此操作)

操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作)

输入输出格式

输入格式:

第一行包含两个正整数N、M,分别表示一开始小根堆的个数和接下来操作的个数。

第二行包含N个正整数,其中第i个正整数表示第i个小根堆初始时包含且仅包含的数。

接下来M行每行2个或3个正整数,表示一条操作,格式如下:

操作1 : 1 x y

操作2 : 2 x

输出格式:

输出包含若干行整数,分别依次对应每一个操作2所得的结果。

输入输出样例

输入样例#1: 复制

5 5
1 5 4 2 3
1 1 5
1 2 5
2 2
1 4 2
2 2

输出样例#1: 复制

1
2

说明

当堆里有多个最小值时,优先删除原序列的靠前的,否则会影响后续操作1导致WA。

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=1000,M<=1000

对于100%的数据:N<=100000,M<=100000

样例说明:

初始状态下,五个小根堆分别为:{1}、{5}、{4}、{2}、{3}。

第一次操作,将第1个数所在的小根堆与第5个数所在的小根堆合并,故变为四个小根堆:{1,3}、{5}、{4}、{2}。

第二次操作,将第2个数所在的小根堆与第5个数所在的小根堆合并,故变为三个小根堆:{1,3,5}、{4}、{2}。

第三次操作,将第2个数所在的小根堆的最小值输出并删除,故输出1,第一个数被删除,三个小根堆为:{3,5}、{4}、{2}。

第四次操作,将第4个数所在的小根堆与第2个数所在的小根堆合并,故变为两个小根堆:{2,3,5}、{4}。

第五次操作,将第2个数所在的小根堆的最小值输出并删除,故输出2,第四个数被删除,两个小根堆为:{3,5}、{4}。

故输出依次为1、2。

code

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<iostream>
 6
 7 using namespace std;
 8
 9 const int N = 200100;
10 int rs[N],ls[N],fa[N],dis[N],val[N];
11
12 inline char nc() {
13     static char buf[100000],*p1 = buf,*p2 = buf;
14     return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
15 }
16 inline int read() {
17     int x = 0,f = 1;char ch = nc();
18     for (; ch<‘0‘||ch>‘9‘; ch = nc()) if (ch==‘-‘) f = -1;
19     for (; ch>=‘0‘&&ch<=‘9‘; ch = nc()) x = x * 10 + ch - ‘0‘;
20     return x * f;
21 }
22 int merge(int x,int y) {
23     if (!x||!y) return x + y;
24     if ((val[x]>val[y])||(val[x]==val[y]&&x>y)) swap(x,y);
25     rs[x] = merge(rs[x],y);
26     fa[rs[x]] = x;
27     if (dis[ls[x]]<dis[rs[x]]) swap(ls[x],rs[x]);
28     dis[x] = dis[rs[x]] + 1;
29     return x;
30 }
31 inline int getmn(int x) {
32     while (fa[x]) x = fa[x];
33     return x;
34 }
35 inline void del(int x) {
36     val[x] = -1;
37     fa[ls[x]] = fa[rs[x]] = 0;
38     merge(ls[x],rs[x]);
39 }
40 int main() {
41     int n = read(),m = read();
42     for (int i=1; i<=n; ++i) val[i] = read();
43     while (m--) {
44         int opt = read();
45         if (opt==1) {
46             int x = read(),y = read();
47             if (val[x]==-1||val[y]==-1||x==y) continue;
48             merge(getmn(x),getmn(y));
49         }
50         else {
51             int x = read();
52             if (val[x]==-1) {puts("-1");continue;}
53             int y = getmn(x);
54             printf("%d\n",val[y]);
55             del(y);
56         }
57     }
58     return 0;
59 }
时间: 2024-10-10 13:57:35

P3377 【模板】左偏树(可并堆)的相关文章

模板 - 左偏树 + 并查集

这两个经常混在一起用的样子,封成同一个好了. #include<bits/stdc++.h> using namespace std; typedef long long ll; int solve(); int main() { #ifdef Yinku freopen("Yinku.in","r",stdin); #endif // Yinku solve(); } int n,m; const int MAXN=100005; int tot,v[

算法模板——左偏树(可并堆)

实现的功能——输入1 x,将x加入小根堆中:输入2,输出最小值并去在堆中除掉 1 var 2 i,j,k,l,m,n,head:longint; 3 a,lef,rig,fix:array[0..100000] of longint; 4 function min(x,y:longint):longint;inline; 5 begin 6 if x<y then min:=x else min:=y; 7 end; 8 function max(x,y:longint):longint;inl

[模板]左偏树

可并堆 可以支持合并的堆. /*大根堆*/ struct heap{ int l,r,w; }h[N]; int rt[N];//第i个堆的根的下标 /*合并以x,y为根的堆*/ inline int merge(int x,int y){ int t; //其中一个堆为空 if(!x||!y) return x+y; //使得x,y两个根中x大 if(h[x].w<h[y].w){ int t=x;x=y;y=t; } //保持堆两边的平衡 h[x].r=merge(y,h[x].r); t=

P3377 【模板】左偏树(可并堆) 左偏树浅谈

因为也是昨天刚接触左偏树,从头理解,如有不慎之处,跪请指教. 左偏树: 什 么是(fzy说)左偏树啊? 前置知识: 左偏树中dist:表示到右叶点(就是一直往右下找,最后一个)的距离,特别的,无右节点的为0. 堆:左偏树是个堆. 关于左偏性质:可以帮助堆合并(研究深了我也不懂的,看代码理解) 对于任意的节点,dist[leftson]>=dist[rightson],体现了左偏性质. 同理可得:对于任意右儿子的父亲节点的dist自然等于右儿子的dist+1喽 关于各种操作: merge: 是插入

模板:左偏树

如果你知道priority_queue的话,那自然就知道左偏树的目的了. 左偏树的目的和优先队列一致,就是求出当前所在堆中的最大(小)值. 但是我们作为高贵的C++选手,我们为什么还要学习左偏树呢. 当然是因为priority_queue太!慢!了! ———————————————————————————————————— 概念引入: 对于左偏树,我们引入两个概念: 外节点:如果该节点的左子树或右子树为空,那么该节点为外节点. 距离(dis):该节点到达最近的外节点经过的边的个数. 我们同时将优

【模板】左偏树

左偏树是可合并堆的一种实现方式,可合并堆还有其他实现方式比如斜堆,然而我这种蒟蒻只会写左偏树. 模板里的左偏树为大根堆,支持合并,查询堆顶和弹出堆顶操作,对于已经删除的位置,查询将返回-1,为了确保弹出的正常进行,模板里使用的并查集没有使用路径压缩,因此常数可能会比较大. 1 #include<stdio.h> 2 #define maxn 1000 3 struct node{int ch[2],w,dist;}; 4 int n,op,ori[maxn]; 5 void swp(int &

左偏树教程

最近学了左偏树,学的时候深感网上没有详细教程之苦,所以自己来写一篇(因为是蒟蒻所以可能写的不是很好) 左偏树是什么? 左偏,顾名思义,就是往左倾斜,左偏树既满足堆的性质,又满足左偏的性质 因为它向左倾斜,所以可以有效的减少查询的时间复杂度 先来看看一颗左偏树 这就是一颗左偏树(虽然有点丑) 左偏树有两个重要的值:键值,距离 键值就是点的权值,而每个点的距离值就是它的右儿子的距离值加1 维护左偏这一性质靠的就是距离值,而维护堆的性质靠的就是权值 左偏树至少满足以下几种操作 合并,查询,删除 合并:

5.左偏树整理

目录 左偏树整理 引言 左偏树整理 整理自IOI2005 国家集训队论文 黄源河 的<左 偏 树 的 特 点 及 其 应 用> 引言 ps:优先队列的实现方式是二叉堆(完全二叉树,父亲的值大于左右两个儿子的值) 针对一些优先队列(二叉堆)合并问题的解法. 优先队列(二叉堆)可以支持三种操作 查询最大(小)值 (Query-Max(Min)) 删除最大(小)值(Delete-Max(Min)) 插入一个元素(Insert) 如果需要一次合并,想法是直接暴力合并.显然时间复杂度是$O(log n

学习笔记——左偏树

左偏树是一个堆,为了实现快速合并的操作,我们可以构造一颗二叉树,并且使右子树尽量简短 什么是左偏呢? 定义:一个左偏树的外节点是一个左子树为空或者右子树为空的节点,对于每一个点定义一个距离dist它为到它子树内外节点的最短距离. 一个合法的左偏树节点需要满足堆性以及它的右子树的dist比左子树的dist小. 为什么要这样呢? 这样右子树的dist是严格控制在logn以内的. 于是我们合并的时候,将另一个左偏树与当前左偏树的右子树合并,这样递归下去,则时间复杂度是O(logn)的. 这就是一颗左偏

bzoj 1455: 罗马游戏 左偏树+并查集

1455: 罗马游戏 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 668  Solved: 247[Submit][Status] Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻.他决定玩这样一个游戏. 它可以发两种命令: 1. Merger(i, j).把i所在的团和j所在的团合并成一个团.如果