题意 求一个序列a某一位的最长递增序列(lis)和最长递减序列(lds)中最小值的最大值
开始直接用DP写了 然后就超时了 后来看到别人说要用二分把时间复杂度优化到O(n*logn) 果然如此 用一个栈s保存长度为i的LIS的最小尾部s[i] top为栈顶即当前LIS的长度 初始s[1]=a[1] top=1 遍历整个序列 当a[i]>s[top]时 a[i]入栈
in[i]=top 否则 在栈中查找(二分)第一个大于等于a[i]的下标pos 并替换 这样就增加了LIS增长的潜力 in[i]=pos;
in[i]表示以a[i]为尾部的LIS的长度 求lds的过程也是类似
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 10005; int a[N], in[N], de[N], s[N], m, n, top, pos; int BinSearch (int k, int le, int ri) { while (le <= ri) { m = (le + ri) >> 1; if (s[m] >= k) ri = m - 1; else le = m + 1; } return ri + 1; } void lis() { memset (s, 0, sizeof (s)); memset (in, 0, sizeof (in)); s[1] = a[1]; in[1] = top = 1; for (int i = 2; i <= n; ++i) { if (s[top] < a[i]) { s[++top] = a[i]; in[i] = top; } else { pos = BinSearch (a[i], 1, top); s[pos] = a[i]; in[i] = pos; } } } void lds() { memset (s, 0, sizeof (s)); memset (de, 0, sizeof (de)); s[1] = a[n]; de[n] = top = 1; for (int i = n - 1; i >= 1; --i) { if (s[top] < a[i]) { s[++top] = a[i]; de[i] = top; } else { pos = BinSearch (a[i], 1, top); s[pos] = a[i]; de[i] = pos; } } } int main() { while (scanf ("%d", &n) != EOF) { for (int i = 1; i <= n; ++i) scanf ("%d", &a[i]); int ans = 1; lis(); lds(); for (int i = 1; i <= n; ++i) { if (min (de[i], in[i]) > ans) ans = min (de[i], in[i]); } printf ("%d\n", ans * 2 - 1); } return 0; }
还有超时的DP版
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N=10005; int a[N],c[N],d[N],n; int dpde(int i) { if(d[i]) return d[i]; d[i]=1; for(int j=i;j<=n;++j) { if(a[i]>a[j]) d[i]=max(d[i],dpde(j)+1); } return d[i]; } int dpin(int i) { if(c[i]) return c[i]; c[i]=1; for(int j=i;j>=1;--j) { if(a[i]>a[j]) c[i]=max(c[i],dpin(j)+1); } return c[i]; } int main() { while(scanf("%d",&n)!=EOF) { for(int i=1;i<=n;++i) scanf("%d",&a[i]); int ans=1; memset(d,0,sizeof(d)); memset(c,0,sizeof(c)); for(int i=1;i<=n;++i) { if(min(dpde(i),dpin(i))>ans) ans=min(d[i],c[i]); } printf("%d\n",ans*2-1); } return 0; }
Wavio Sequence
Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length i.e. L = 2*n + 1.
· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a Wavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio
sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be 9.
Input
The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.
Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will be N integers.
Output
For each set of input print the length of longest wavio sequence in a line.
Sample Input Output for Sample Input
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 |
9 9 1
|
Problemsetter: Md. Kamruzzaman, Member of Elite Problemsetters‘ Panel