第六章 logistic回归与最大熵模型

1、logistic回归是统计学习中的经典分类方法。

最大熵模型:最大熵是概率模型学习的一个准则,将其推广到分类问题得到最大熵模型。

两者都是对数线性模型。

2、二项logstic分类模型:用于二类分布。

多项logstic分类模型:用于多类分布。

3、最大熵模型(maximum entropy model):是由最大熵原理推导实现。

4、熵最大原理:学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。

5、当X服从均匀分布时,熵最大。

6、改进的迭代尺度法(improved iterative scaling,IIS):

想法:假设最大熵模型当前的参数向量是w,我们希望找到一个新的参数向量w+delta,使得模型的对数似然函数值增大。如果能有这样一种参数向量更新的方法tao:w-->w+delta,那么就可以重复使用这一方法,直至找到对数似然函数的最大值。

时间: 2025-01-02 17:16:26

第六章 logistic回归与最大熵模型的相关文章

统计学习方法 李航---第6章 逻辑回归与最大熵模型

第6章 逻辑回归与最大熵模型 逻辑回归(logistic regression)是统计学习中的经典分类方法.最大嫡是概率模型学习的一个准则将其推广到分类问题得到最大熵模型(maximum entropy model).逻辑回归模型与最大熵模型都属于对数线性模型. 6.1 逻辑回归模型 定义6.1(逻辑分布):设X是连续随机变量,X服从逻辑斯谛分布是指 X具有下列分布函数和密度函数 式中,u为位置参数,r>0为形状参数. 逻辑分布的密度函数f(x)和分布函数F(x)的图形如图所示.分布函数属于逻辑

统计学习方法 –> 逻辑死地回归与最大熵模型

前言 本章的两个模型都是对数线性模型. 逻辑斯蒂分布 如果变量X服从逻辑斯蒂分布,那么X的分布一定是y轴对称的.曲线在中心部分增长的较快.两端增长缓慢. 二项逻辑斯蒂回归模型 其本质就是条件概率P(Y|X).也就意味着给定X,求出最大可能的Y来. Y取值只有1和0. 考虑条件概率分布. 逻辑斯蒂回归模型:输出Y=1的对数几率是输出x的线性函数的模型. 参数模型估计 还是求极大似然估计. 逻辑回归的优缺点: 优点:1>实现简单         2>计算量小,速度快,存储资源低 缺点:1>欠

逻辑斯谛回归,softmax回归与最大熵模型

逻辑斯谛回归(logistic regression)是统计学习中的经典分类方法 最大熵是概率模型学习的一个准则,被推广到分类问题后可得到最大熵模型(Maximum Entropy Model) 逻辑斯谛回归模型与最大熵模型都属于对数线性模型,而对数线性模型又是广义线性模型的一种. 科普一下:狭义的线性模型是指 自变量的线性预测 就是 因变量的估计值, 而广义的线性模型是指 自变量的线性预测的函数 是 因变量的估计值. 逻辑斯谛回归 逻辑斯蒂分布 logistic distribution,设X

转载 Deep learning:六(regularized logistic回归练习)

前言: 在上一讲Deep learning:五(regularized线性回归练习)中已经介绍了regularization项在线性回归问题中的应用,这节主要是练习regularization项在logistic回归中的应用,并使用牛顿法来求解模型的参数.参考的网页资料为:http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex5/ex5.html.要解决的

逻辑回归和最大熵模型

逻辑回归 因变量随着自变量变化而变化. 多重线性回归是用回归方程描述一个因变量与多个自变量的依存关系,简称多重回归,其基本形式为:Y= a + bX1+CX2+*+NXn. 二项分布即重复n次独立的伯努利试验.在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布. 逻辑分布 二项逻辑回归 如何求逻辑回归中的参数W 首先介绍似然

机器学习(六)— logistic回归

最近一直在看机器学习相关的算法,今天学习logistic回归,在对算法进行了简单分析编程实现之后,通过实例进行验证. 一 logistic概述 个人理解的回归就是发现变量之间的关系,也就是求回归系数,经常用回归来预测目标值.回归和分类同属于监督学习,所不同的是回归的目标变量必须是连续数值型. 今天要学习的logistic回归的主要思想是根据现有的数据对分类边界线建立回归公式,以此进行分类.主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率等等.log

3月机器学习在线班第六课笔记--信息熵与最大熵模型

原文:https://www.zybuluo.com/frank-shaw/note/108124 信息熵 信息是个很抽象的概念.人们常常说信息很多,或者信息较少,但却很难说清楚信息到底有多少.比如一本五十万字的中文书到底有多少信息量.直到1948年,香农提出了“信息熵”的概念,才解决了对信息的量化度量问题.(百度百科) 香农定义的信息熵的计算公式如下: H(X)=−∑p(xi)log(p(xi))    (i=1,2,…,n) 其中X 表示的是随机变量,随机变量的取值为(x1,x2,…,xn)

第六章 逻辑斯蒂回归与最大熵模型

书中重要定义及一些理解 先通过介绍逻辑史蒂的分布来引出logist模型 而通过极大似然法来推导模型的参数估计问题 通过对模型参数的似然函数通过求导来得到递归方程 通过公式可以看出logist是对前面的感知机的升级版,感知机的判断方式过于简单.而其梯度下降的时候也将sign的去掉了,否则无法微分. 后通过方程来写出公式,代码如下 import numpy as np from read_data import get_2_kind_data def logistic_Regression(tra_

统计学习方法(六)——逻辑斯谛回归与最大熵模型

/*先把标题给写了,这样就能经常提醒自己*/ 转自别处 有很多与此类似的文章  也不知道谁是原创 因原文由少于错误 所以下文对此有修改并且做了适当的重点标记(横线见的内容没大明白 并且有些复杂,后面的运行流程依据前面的得出的算子进行分类) 初步接触 谓LR分类器(Logistic Regression Classifier),并没有什么神秘的.在分类的情形下,经过学习之后的LR分类器其实就是一组权值w0,w1,...,wm. 当测试样本集中的测试数据来到时,这一组权值按照与测试数据线性加和的方式