Sentence 1

  1. People attend college or university for a lot of different reasons. I believe that the three most common reasons are to prepare for a career, to have new experiences, and to increase their knowledge of themselves and the world around them.

1‘ attend college or university

2‘ someone do sth. for a lot of (different) reasons

3‘ the three most common reasons

4‘ to do sth. / doing sth. AS noun

"to do sth. will..." means  the thing have not been done!

"ding sth. " means the thing is being done!

"doing sth." 很普遍的表示,没有时间的暗示。

e.g. Going to college is the first time they have been away from home.

He said towards little boys, "To go to university, you will meet a lot of fresh things"

e.g.

To be continued.

Question to be resolved.

5‘ career,new experience are countable

6‘ to have new experiences

7‘ to increase knowledge of themselves and the world around them

来自为知笔记(Wiz)

时间: 2024-10-03 21:41:17

Sentence 1的相关文章

hdu 4416 Good Article Good sentence(后缀数组&思维)

Good Article Good sentence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2308    Accepted Submission(s): 649 Problem Description In middle school, teachers used to encourage us to pick up pre

hdu 4416 Good Article Good sentence (后缀数组)

题目大意: 给出一个A串和很多个B串,求出A中有多少个子串,是所有的B中没有出现的. 思路分析: 后缀数组的作用很容易的求出来整个串中不同的子串个数. 现在要求的是A中不同的,且在B中没有出现过的. 先把AB 串全部连接,跑一遍suffix array.然后求出有多少个不同的子串. 然后再单独用B 串跑 suffix array.再求出单独在B 中有多少个不同的 子串. 然后结果就是 ans1 - ans2 ... 需要注意的问题就是,连接的时候需要把每一个串后面加一个特殊符.但是求不同串的时候

Tutorials on training the Skip-thoughts vectors for features extraction of sentence.

Tutorials on training the Skip-thoughts vectors for features extraction of sentence.  1. Send emails and download the training dataset.  the dataset used in skip_thoughts vectors is from [BookCorpus]: http://yknzhu.wixsite.com/mbweb first, you should

[LeetCode] Sentence Screen Fitting 调整屏幕上的句子

Given a rows x cols screen and a sentence represented by a list of words, find how many times the given sentence can be fitted on the screen. Note: A word cannot be split into two lines. The order of words in the sentence must remain unchanged. Two c

Distributed Sentence Similarity Base on Word Mover's Distance

Algorithm: Refrence from one ICML15 paper: Word Mover's Distance. 1. First use Google's word2vec tool to get distributed word representing aka. word vectors. 2. Then use earth mover's distance as similarity measure metric. 3. Solve the EMD problem as

[hdu 4416]Good Article Good sentence

最近几天一直在做有关后缀自动机的题目 感觉似乎对后缀自动机越来越了解了呢!喵~ 这题还是让我受益颇多的,首先搞一个后缀自动机是妥妥的了 可是搞完之后呢? 我们来观察 step 这个变量,每个节点的 step 是从根节点到此节点所经过的最长步数 那么也就是以该点为结尾的最长的后缀长度 如何统计不被 Bi 串包含的子串呢? 其实很简单,维护每个节点所能匹配的最长的字符串长度 然后 节点->step-max(该节点所能匹配的最长的字符串长度, 节点->fail->step) 就是答案了 因为

Basic SQL sentence

create database ST; use st; create table Student( Sno varchar(10) primary key , Sname varchar(15) , Ssex varchar(2) , Sage int , Sdept varchar(10) ); create table Course( Cno varchar(10) primary key , Cname varchar(15) not null, Cpo varchar(10) , Ccr

HDOJ 4416 Good Article Good sentence

题解转自:http://blog.csdn.net/dyx404514/article/details/8807440 2012杭州网络赛的一道题,后缀数组后缀自己主动机都行吧. 题目大意:给一个字符串S和一系列字符串T1~Tn,问在S中有多少个不同子串满足它不是T1~Tn中随意一个字符串的子串. 思路:我们先构造S的后缀自己主动机,然后将每个Ti在S的SAM上做匹配,类似于LCS,在S中的每个状态记录一个变量deep,表示T1~Tn,在该状态能匹配的最大长度是多少,将每个Ti匹配完之后,我们将

Leetcode: Sentence Screen Fitting

Given a rows x cols screen and a sentence represented by a list of words, find how many times the given sentence can be fitted on the screen. Note: A word cannot be split into two lines. The order of words in the sentence must remain unchanged. Two c

hdu 4416 Good Article Good sentence(后缀自动机)

题目链接:hdu 4416 Good Article Good sentence 题意: 给你一个串A和n个串B,问你A有多少个子串不是这n个B的子串. 题解: 将A串建立后缀自动机,对于每个B串都拿去匹配一下,并记录后缀自动机中每个节点的最大匹配长度. 然后拓扑排序,更新每个节点的fail节点.最后对于每个节点的贡献就是ml[i]-max(is[i],mx[f[i]]) (is[i]是该节点的最大匹配长度) 1 #include<bits/stdc++.h> 2 #define F(i,a,