Mike的农场 (BZOJ 4177)

题目大意:

给N个东西分AB类,分到A类和B类分别得到相应的钱记为A[i],B[i],然后有一些冲突关系<x,y,z>,如果物品x,y不同类需要付出z的钱。还有一些外快<S,x,y>,当某个集合里的元素都是x类的时候得到y的钱。 求最大收益。

思路:

1.如果只考虑冲突关系,那么就是非常裸的最小割,显然这题应该在最小割的基础上加点东东. 然后集合附加权貌似是个比较经典的东西(虽然我也是做了这题才知道...),我这种蒟蒻肯定不能独立AC啦,于是愉快地看了题解。貌似和BZOJ3438是差不多的,所以搜这题的题解的时候可以搜BZOJ3438的题解。

2.总结了一下前人经验发现大致有两种构图方法。其中方法二貌似只有一个博客里看到,感觉比较厉害,而且比较好理解。。

共同点:对于冲突<x,y,z>,连边<x,y,z> <y,x,z> (格式为<点,点,容量>).

方法一:

先把所有的钱加起来减去最小割就是答案。 对于附加权,A类集合搞一个新的点P,从P向集合中的点连边,容量无穷大,从S向P连边容量为附加权.  B类集合同理,不过是从集合中的点连边到P,容量无穷大,从P到T连边容量为附加权。 对于每个点x,连边<S,x,A[i]> <x,T,B[i]>.

下面是本人YY的大致证明:其他的就不多说了,证明附加权的部分。

对于A类集合点P,如果边<S,P>被割掉了,那么必定有集合中的某个点x,<S,x>也被割掉了(反证:如果不成立,那么完全没必要割<S,P>),实际意义是集合中的元素不全是属于A类,所以扣掉代价,也就是这条边的容量。

对于B类集合点P,如果边<P,T>被割掉了,那么必定有集合中的某个点x,从S有路到x(反证:如果不成立,那么完全没必要割<P,T>),实际意义是集合中的元素不全是属于B类,所以扣掉代价,也就是这条边的容量。

方法二:

转化为最大权闭合图。假设所有点都被分到A类,所以把A[i]都加起来,还要加上A类集合的附加权.然后构造带权闭合图。一个点的点权为B[i]-A[i],实际意义是把它从A类变成B类的代价。 然后考虑附加权。  A类集合的附加权:搞一个新的点P,P的点权是附加权的相反数,从集合中的元素连边到P, 根据闭合图的定义,如果集合中的某个元素x选来了,也就是x变成了B类,那么P点也必须选来,所以就把相应的钱扣掉。 B类集合的附加权:搞一个新的点P,P的点权是附加权,从P连边到集合中的元素,表示如果要赚P的钱,必须把集合中的元素都变成B类。   然后就是最大权闭合图的做法了,具体不再赘述。

退役好久没做题,dinic的写不对了。。

时间: 2024-10-11 04:43:17

Mike的农场 (BZOJ 4177)的相关文章

bzoj 4177 Mike的农场

bzoj 4177 Mike的农场 思维有些江化了,一上来就想费用流做法,但其实就是个最小割啊. 考虑先将所有的收益拿到,再减去不能拿的以及三元组 \((i,j,k)\) 产生的代价.即,先让 \(ans=\sum a_i+b_i+\sum_{(S,a,b)} b\). 然后要让减去的最小,尝试构造一个最小割模型.建一个源点 \(S\) ,一个汇点 \(T\) . 为了满足每个点只能选一种动物,从 \(S\) 向每个点 \(i\) 连权值为 \(a_i\) 的边,从每个点 \(i\) 向 \(T

bzoj4177: Mike的农场

类似于最大权闭合图的思想. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define rep(i,n) for(int i=1;i<=n;i++) #define clr(x,c) memset(x,c,sizeof(x)) #define op() pt=edges;clr(head,0) int rea

【BZOJ4177】Mike的农场 最小割

[BZOJ4177]Mike的农场 Description Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元,每只羊可以卖b[i]元,为了防止牛羊之间相互影响,Mike找到了m条规律,每条规律给出一个三元组(i, j, k)表示如果第i个围栏和第j个围栏养的是不同的动物,那么Mike就需要花费k的代价请人帮忙处理牛羊之间的影响.不过同时Mike也发现k条

【bzoj4177】Mike的农场 网络流最小割

题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i]元,每只羊可以卖b[i]元,为了防止牛羊之间相互影响,Mike找到了m条规律,每条规律给出一个三元组(i, j, k)表示如果第i个围栏和第j个围栏养的是不同的动物,那么Mike就需要花费k的代价请人帮忙处理牛羊之间的影响.不过同时Mike也发现k条特殊的规则(S, a, b),表示如果S中所有牲畜

bzoj4177:最小割

试着用证明文理分科那道题的方法去推,取st和单独两个点(简化问题),发现收取费用k可以在u和v中间连双向边,三种情况也还是分别对应:一是割掉与s相连的两条边,即都养羊,二是割掉与t相连的两条边,即都养羊,三是割掉s->i,j->i,j->t三条边图就不联通了,刚好对应养不同的牛.所以说多尝试是√的.happying 1.点的数量开始写成2*nWA 2.相同的变量名WA ------------------------------------------------------------

【个人整理】网络流

说明:S,表示超级原点,T表示超级汇点,<i,j,k(,l)>表示i到j建边,流量为k(,费用为l) bzoj4177 Mike的农场 题解:考虑割,养牛的收益为a[i],养羊b[i],对于每个位置<S,i,ai> <i,T,bi>分别表示养牛和养羊,对于两个互相影响的位置<i,j,ci>:做最小割可以满足前两个限制 :第三个限制,如果全养牛可以获得d,新建一个点x,考虑要求全养牛的位置为集合为s,<S,x,d> , <x,si,inf&g

[bzoj]3436 小K的农场

[题目描述] 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述:农场a比农场b至少多种植了c个单位的作物,农场a比农场b至多多种植了c个单位的作物,农场a与农场b种植的作物数一样多.但是,由于小K的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合. [输入格式] farm.in 第一行包括两个整数n和m,分别表示农场数目和小K记忆中的信息数目. 接下来m

BZOJ 3436 小K的农场 查分约束系统 SPFA判负环

题目大意:农场中有一些土地,上面会长一些作物,现在给出一些约束条件,问有没有这种可能. 思路:裸的查分约束系统判负环.记住要跑最长路. CODE: #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 100010 using namespace std; int points,asks;

BZOJ 3436: 小K的农场 差分约束

题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3436 题解: 裸的差分约束: 1.a>=b+c  ->  b<=a-c  ->  d[v]<=d[u]+w  ->  建一条边从a到b,权值为-c 2.a<=b+c  ->  d[v]<=d[u]+w  -> 建一条边从b到a,权值为c 3.a==b  ->  d[v]<=d[u]+0&&d[u]<=d