排序算法(四)——归并排序与递归

基本思想

分析归并排序之前,我们先来了解一下分治算法

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。

分治算法的一般步骤:

(1)分解,将要解决的问题划分成若干规模较小的同类问题;

(2)求解,当子问题划分得足够小时,用较简单的方法解决;

(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

归并排序是分治算法的典型应用。

归并排序先将一个无序的N长数组切成N个有序子序列(只有一个数据的序列认为是有序序列),然后两两合并,再将合并后的N/2(或者N/2 + 1)个子序列继续进行两两合并,以此类推得到一个完整的有序数组。过程如下图所示:

java实现

归并排序的核心思想是将两个有序的数组归并到另一个数组中,所以需要开辟额外的空间

第一步要理清归并的思路。假设现在有两个有序数组A和B,要将两者有序地归并到数组C中。我们用一个实例来推演:

上图中,A数组中有四个元素,B数组中有六个元素,首先比较A、B中的第一个元素,将较小的那个放到C数组的第一位,因为该元素就是A、B所有元素中最小的。上例中,7小于23,所以将7放到了C中。

然后,用23与B中的其他元素比较,如果小于23,继续按顺序放到C中;如果大于23,则将23放入C中。

23放入C中之后,用23之后的47作为基准元素,与B中的其他元素继续比较,重复上面的步骤。

如果有一个数组的元素已经全部复制到C中了,那么将另一个数组中的剩余元素依次插入C中即可。至此结束。

按照上面的思路,用java实现:

/**
    * 归并arrayA与arrayB到arrayC中
    * @param arrayA  待归并的数组A
    * @param sizeA 数组A的长度
    * @param arrayB  待归并的数组B
    * @param sizeB 数组B的长度
    * @param arrayC  辅助归并排序的数组
    */
   public static void merge(int [] arrayA,int sizeA,
                         int [] arrayB,int sizeB,
                         int [] arrayC){

       int i=0,j=0,k=0;  //分别当作arrayA、arrayB、arrayC的下标指针

       while(i<sizeA&& j<sizeB){  //两个数组都不为空
          if(arrayA[i]<arrayB[j]){//将两者较小的那个放到arrayC中
              arrayC[k++]= arrayA[i++];
          }else{
              arrayC[k++]= arrayB[j++];
          }
       }  //该循环结束后,一个数组已经完全复制到arrayC中了,另一个数组中还有元素

       //后面的两个while循环用于处理另一个不为空的数组
       while(i<sizeA){
          arrayC[k++]= arrayA[i++];
       }

       while(j<sizeB){
          arrayC[k++]= arrayA[j++];
       }

       for(intl=0;l<arrayC.length;l++){  //打印新数组中的元素
          System.out.print(arrayC[l]+"\t");
       }
   }

再归并之前,还有一步工作需要提前做好,就是数组的分解,可以通过递归的方法来实现。递归(Recursive)是算法设计中常用的思想。

这样通过先递归的分解数组,再合并数组就完成了归并排序。

完整的java代码如下:

public class Sort {

   private int [] array;  //待排序的数组

   public Sort(int [] array){
       this.array= array;
   }

   //按顺序打印数组中的元素
   public void display(){
       for(int i=0;i<array.length;i++){
          System.out.print(array[i]+"\t");
       }
       System.out.println();
   }

   //归并排序
   public void mergeSort(){

       int[] workSpace = new int [array.length]; //用于辅助排序的数组
       recursiveMergeSort(workSpace,0,workSpace.length-1);
   }

   /**
    * 递归的归并排序
    * @param workSpace  辅助排序的数组
    * @param lowerBound 欲归并数组段的最小下标
    * @param upperBound 欲归并数组段的最大下标
    */
   private void recursiveMergeSort(int [] workSpace,int lowerBound,int upperBound){

       if(lowerBound== upperBound){  //该段只有一个元素,不用排序
          return;
       }else{
          int mid = (lowerBound+upperBound)/2;
          recursiveMergeSort(workSpace,lowerBound,mid);    //对低位段归并排序
          recursiveMergeSort(workSpace,mid+1,upperBound);  //对高位段归并排序
          merge(workSpace,lowerBound,mid,upperBound);
          display();
       }
   }

   /**
    * 对数组array中的两段进行合并,lowerBound~mid为低位段,mid+1~upperBound为高位段
    * @param workSpace 辅助归并的数组,容纳归并后的元素
    * @param lowerBound 合并段的起始下标
    * @param mid 合并段的中点下标
    * @param upperBound 合并段的结束下标
    */
   private void merge(int [] workSpace,int lowerBound,int mid,int upperBound){

       int lowBegin = lowerBound;  //低位段的起始下标
       int lowEnd = mid;           //低位段的结束下标
       int highBegin = mid+1;  //高位段的起始下标
       int highEnd = upperBound;  //高位段的结束下标
       int j = 0; //workSpace的下标指针
       int n = upperBound-lowerBound+1;  //归并的元素总数

       while(lowBegin<=lowEnd && highBegin<=highEnd){
          if(array[lowBegin]<array[highBegin]){//将两者较小的那个放到workSpace中
              workSpace[j++]= array[lowBegin++];
          }else{
              workSpace[j++]= array[highBegin++];
          }
       } 

       while(lowBegin<=lowEnd){
          workSpace[j++]= array[lowBegin++];
       }

       while(highBegin<=highEnd){
          workSpace[j++]= array[highBegin++];
       }

       for(j=0;j<n;j++){  //将归并好的元素复制到array中
          array[lowerBound++]= workSpace[j];
       }

   }
}

用以下代码测试:

int [] a ={6,2,7,4,8,1,5,3};
Sort sort = newSort(a);
sort.mergeSort();

打印结果如下:

归并的顺序是这样的:先将初始数组分为两部分,先归并低位段,再归并高位段。对低位段与高位段继续分解,低位段分解为更细分的一对低位段与高位段,高位段同样分解为更细分的一对低位段与高位段,依次类推。

上例中,第一步,归并的是6与2,第二步归并的是7和4,第三部归并的是前两步归并好的子段[2,6]与[4,7]。至此,数组的左半部分(低位段)归并完毕,然后归并右半部分(高位段)。

所以第四步归并的是8与1,第四部归并的是5与3,第五步归并的是前两步归并好的字段[1,8]与[3,5]。至此,数组的右半部分归并完毕。

最后一步就是归并数组的左半部分[2,4,6,7]与右半部分[1,3,5,8]。

归并排序结束。

在本文开始对归并排序的描述中,第一躺归并是对所有相邻的两个元素归并结束之后,才进行下一轮归并,并不是先归并左半部分,再归并右半部分,但是程序的执行顺序与我们对归并排序的分析逻辑不一致,所以理解起来有些困难。

下面结合代码与图例来详细分析一下归并排序的过程。

虚拟机栈(VM  Stack)是描述Java方法执行的内存模型,每一次方法的调用都伴随着一次压栈、出栈操作。

我们要排序的数组为:

int [] a = {6,2,7,4,8,1,5,3}

当main()方法调用mergeSort()方法时,被调用的方法被压入栈中,然后程序进入mergeSort()方法:

public void mergeSort(){
       int[] workSpace = new int [array.length]; //用于辅助排序的数组
       recursiveMergeSort(workSpace,0,workSpace.length-1);
   }

此时,mergeSort()又调用了recursiveMergeSort(workSpace,0,7)方法,recursiveMergeSort(workSpace,0,7)方法也被压入栈中,在mergeSort()之上。

然后,程序进入到recursiveMergeSort(workSpace,0,7)方法:

 if(lowerBound== upperBound){  //该段只有一个元素,不用排序
          return;
       }else{
          int mid = (lowerBound+upperBound)/2;
          recursiveMergeSort(workSpace,lowerBound,mid);    //对低位段归并排序
          recursiveMergeSort(workSpace,mid+1,upperBound);  //对高位段归并排序
          merge(workSpace,lowerBound,mid,upperBound);
          display();
       }

lowerBound参数值为0,upperBound参数值为7,不满足lowerBound== upperBound的条件,所以方法进入else分支,然后调用方法recursiveMergeSort(workSpace,0,3) ,

recursiveMergeSort(workSpace,0,3)被压入栈中,此时栈的状态如下:

然而,recursiveMergeSort(workSpace,0,3)不能立即返回,它在内部又会调用recursiveMergeSort(workSpace,0,1),recursiveMergeSort(workSpace,0,1)又调用了recursiveMergeSort(workSpace,0,0),此时,栈中的状态如下:

程序运行到这里,终于有一个方法可以返回了结果了——recursiveMergeSort(workSpace,0,0),该方法的执行的逻辑是对数组中的下标从0到0的元素进行归并,该段只有一个元素,所以不用归并,立即return。

方法一旦return,就意味着方法结束,recursiveMergeSort(workSpace,0,0)从栈中弹出。这时候,程序跳到了代码片段(二)中的第二行:

recursiveMergeSort(workSpace,1,1);

该方法入栈,与recursiveMergeSort(workSpace,0,0)类似,不用归并,直接返回,方法出栈。

这时候程度跳到了代码片段(二)中的第三行:

merge(workSpace,0,0,1);

即对数组中的前两个元素进行合并(自然,merge(workSpace,0,0,1)也伴随着一次入栈与出栈)。

至此,代码片段(二)执行完毕,recursiveMergeSort(workSpace,0,1)方法出栈,程序跳到代码片段(三)的第二行:

recursiveMergeSort(workSpace,2,3);

该方法是对数组中的第三个、第四个元素进行归并,与执行recursiveMergeSort(workSpace,0,1)的过程类似,最终会将第三个、第四个元素归并排序。

然后,程序跳到程序跳到代码片段(三)的第三行:

merge(workSpace,0,1,3);

将前面已经排好序的两个子序列(第一第二个元素为一组、第三第四个元素为一组)合并。

然后recursiveMergeSort(workSpace,0,3)出栈,程序跳到代码片段(四)的第二行:

recursiveMergeSort(workSpace,4,7);

对数组的右半部分的四个元素进行归并排序,伴随着一系列的入栈、出栈,最后将后四个元素排好。此时,数组的左半部分与右半部分已经有序。

然后程序跳到代码片段(四)第三行:

merge(workSpace,0,3,7);

对数组的左半部分与右半部分合并。

然后recursiveMergeSort(workSpace,4,7)出栈,mergeSort()出栈,最后main()方法出栈,程序结束。

算法分析

先来分析一下复制的次数。

如果待排数组有8个元素,归并排序需要分3层,第一层有四个包含两个数据项的自数组,第二层包含两个包含四个数据项的子数组,第三层包含一个8个数据项的子数组。合并子数组的时候,每一层的所有元素都要经历一次复制(从原数组复制到workSpace数组),复制总次数为3*8=24次,即层数乘以元素总数。

设元素总数为N,则层数为log2N,复制总次数为N*log2N。

其实,除了从原数组复制到workSpace数组,还需要从workSpace数组复制到原数组,所以,最终的复制复制次数为2*N*log2N。

在大O表示法中,常数可以忽略,所以归并排序的时间复杂度为O(N* log2N)。

一般来讲,复制操作的时间消耗要远大于比较操作的时间消耗,时间复杂度是由复制次数主导的。

下面我们再来分析一下比较次数。

在归并排序中,比较次数总是比复制次数少一些。现在给定两个各有四个元素的子数组,首先来看一下最坏情况和最好情况下的比较次数为多少。

第一种情况,数据项大小交错,所以必须进行7次比较,第二种情况中,一个数组比另一个数组中的所有元素都要小,因此只需要4次比较。

当归并两个子数组时,如果元素总数为N,则最好情况下的比较次数为N/2,最坏情况下的比较次数为N-1。

假设待排数组的元素总数为N,则第一层需要N/2次归并,每次归并的元素总数为2;则第一层需要N/4次归并,每次归并的元素总数为4;则第一层需要N/8次归并,每次归并的元素总数为8……最后一次归并次数为1,归并的元素总数为N。总层数为log2N。

最好情况下的比较总数为:

N/2*(2/2)+ N/4*(4/2)+N/8*(8/2)+...+1*(N/2) = (N/2)*log2N

最好情况下的比较总数为:

N/2*(2-1)+ N/4*(4-1)+N/8*(8-1)+...+1*(N-1) =

(N-N/2)+ (N-N/4)+(N-N/8)+...+(N-1)=

N*log2N-(1+N/2+N/4+..)< N*log2N

可见,比较次数介于(N/2)*log2N与N*log2N之间。如果用大O表示法,时间复杂度也为O(N* log2N)。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-23 21:59:06

排序算法(四)——归并排序与递归的相关文章

排序算法之归并排序(递归实现)

[归并排序的思想] 归并排序的思想是如果子数组L和子数组R都是有序的,那么我们可以将其合并为一个有序数组:在归并排序中,首先将子数组的长度设为1,此时每个元素都是一个有序子数组,通过两两合并,我们可以得到若干个长度为2的有序子数组,然后对这些长度为2的子数组两两合并,就可以得若干个到长度为4的有序子数组--------如此下去,最终将合并为一个有序的数组. 下面用一个例子来说明: 假设有数组A[]={25 ,5 ,71, 1, 61, 11, 59 ,15, 48 ,19} 步骤一:(25)(5

排序算法系列——归并排序

记录学习点滴,菜鸟成长记 归并排序的英文叫做Merge-Sort,要想明白归并排序算法,还要从“递归”的概念谈起. 1.递归 一般来讲,人在做决策行事的时候是往往是从已知出发,比如,我又要举个不恰当的例子了→_→: 看到漂亮姑娘→喜欢人家→追→女朋友→老婆 但是人家施瓦辛格不是这么想的,人家从小就立志当总统: 要当总统←先当州长←竞选州长要有钱←那得找个有钱妹子←妹子都喜欢明星←身材好能当明星←健身 递归,就像一个人对自己的发展有清晰的规划和坚定的信心一样,他知道每一步会有怎么样的结果,他需要仅

常用排序算法之——归并排序

归并排序的原理: 如果数组的元素个数大于1,则: 将数组平均分为两部分: 左边的数组归并排序:递归 右边的数组归并排序:递归 将两个各自有序的数组合并,需要一个额外的辅助数组,暂时保存合并结果:返回 否则,数组元素个数为1时,已经有序:直接返回. 稳定排序.时间复杂度在最坏.最好.平均情况下都为O(N lgN),空间复杂度为O(N). 代码: 1 #include <iostream> 2 using namespace std; 3 4 template<typename T>

Java常见排序算法之归并排序

在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let‘s go~~~ 1.排序算法的基本概念的讲解 时间复杂度:需要排序的的关键字的比较次数和相应的移动的次数. 空间复杂度:分析需要多少辅助的内存. 稳定性:如果记录两个关键字的A和B它们的值相等,经过排序后它们相对的位置没有发生交换,那么我们称这个排序算法是稳定的. 否则我们称这个排序算法是不稳定的

排序算法四:交换排序之冒泡排序

排序算法四:交换排序之冒泡排序 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 引言 在我的博文<"主宰世界"的10种算法短评>中给出的首个算法就是高效的排序算法.本文将对排序算法做一个全面的梳理,从最简单的"冒泡"到高效的堆排序等. 系列博文的前三篇讲述了插入排序的三种不同类型,本文讲述第二大类的排序算法:交换排序,包括冒泡排序和快速排序. 排序相关的的基本概念 排序:将一组杂乱无章的数据按一定的规律顺次排列起

图解排序算法(四)之归并排序

基本思想 归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之). 分而治之 可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现).分阶段可以理解为就是递归拆分子序列的过程,递归深度为log2n. 合并相邻有序子序列 再来看看治阶段

我的Java开发学习之旅------&amp;gt;Java经典排序算法之归并排序

一.归并排序 归并排序是建立在归并操作上的一种有效的排序算法,该算法是採用分治法(Divide and Conquer)的一个很典型的应用.将已有序的子序列合并,得到全然有序的序列.即先使每一个子序列有序.再使子序列段间有序.若将两个有序表合并成一个有序表.称为二路归并. 归并过程为:比較a[i]和a[j]的大小.若a[i]≤a[j],则将第一个有序表中的元素a[i]拷贝到r[k]中,并令i和k分别加上1.否则将第二个有序表中的元素a[j]拷贝到r[k]中,并令j和k分别加上1.如此循环下去.直

排序算法之归并排序(Mergesort)解析

一.归并排序的优缺点(pros and cons) 耗费心思来理解它,总要有个理由吧: 归并排序的效率达到了巅峰:时间复杂度为O(nlogn),这是基于比较的排序算法所能达到的最高境界 归并排序是一种稳定的算法(即在排序过程中大小相同的元素能够保持排序前的顺序,3212升序排序结果是1223,排序前后两个2的顺序不变),这一点在某些场景下至关重要 归并排序是最常用的外部排序方法(当待排序的记录放在外存上,内存装不下全部数据时,归并排序仍然适用,当然归并排序同样适用于内部排序...) 缺点: 归并

我的Java开发学习之旅------&gt;Java经典排序算法之归并排序

一.归并排序 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列有序,再使子序列段间有序.若将两个有序表合并成一个有序表,称为二路归并. 归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1:否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直

经典排序算法之归并排序

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为(大O符号).1945年由约翰·冯·诺伊曼首次提出.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行.归并排序适用于数据量大,同时解决了快速排序的痛点,大量重复数据并且链式结构同样适用(链式结构需要自己修改上述代码),但是归并排序同样也有问题就是需要开辟额外空间. 归并操作(merge),也叫归并算法,指的是将两个已经排序的序列合并