搭建Hadoop2.6.0+Eclipse开发调试环境

上一篇在win7虚拟机下搭建了hadoop2.6.0伪分布式环境。为了开发调试方便,本文介绍在eclipse下搭建开发环境,连接和提交任务到hadoop集群。

1. 环境

Eclipse版本Luna 4.4.1

安装插件hadoop-eclipse-plugin-2.6.0.jar,下载后放到eclipse/plugins目录即可。

2. 配置插件

2.1 配置hadoop主目录

解压缩hadoop-2.6.0.tar.gz到C:\Downloads\hadoop-2.6.0,在eclipse的Windows->Preferences的Hadoop Map/Reduce中设置安装目录。

2.2 配置插件

打开Windows->Open Perspective中的Map/Reduce,在此perspective下进行hadoop程序开发。

    

打开Windows->Show View中的Map/Reduce Locations,如下图右键选择New Hadoop location…新建hadoop连接。

确认完成以后如下,eclipse会连接hadoop集群。

如果连接成功,在project explorer的DFS Locations下会展现hdfs集群中的文件。

3. 开发hadoop程序

3.1 程序开发

开发一个Sort示例,对输入整数进行排序。输入文件格式是每行一个整数。

 1 package com.ccb;
 2
 3 /**
 4  * Created by hp on 2015-7-20.
 5  */
 6
 7 import java.io.IOException;
 8
 9 import org.apache.hadoop.conf.Configuration;
10 import org.apache.hadoop.fs.FileSystem;
11 import org.apache.hadoop.fs.Path;
12 import org.apache.hadoop.io.IntWritable;
13 import org.apache.hadoop.io.Text;
14 import org.apache.hadoop.mapreduce.Job;
15 import org.apache.hadoop.mapreduce.Mapper;
16 import org.apache.hadoop.mapreduce.Reducer;
17 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
18 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
19
20 public class Sort {
21
22     // 每行记录是一个整数。将Text文本转换为IntWritable类型,作为map的key
23     public static class Map extends Mapper<Object, Text, IntWritable, IntWritable> {
24         private static IntWritable data = new IntWritable();
25
26         // 实现map函数
27         public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
28             String line = value.toString();
29             data.set(Integer.parseInt(line));
30             context.write(data, new IntWritable(1));
31         }
32     }
33
34     // reduce之前hadoop框架会进行shuffle和排序,因此直接输出key即可。
35     public static class Reduce extends Reducer<IntWritable, IntWritable, IntWritable, Text> {
36
37         //实现reduce函数
38         public void reduce(IntWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
39             for (IntWritable v : values) {
40                 context.write(key, new Text(""));
41             }
42         }
43     }
44
45     public static void main(String[] args) throws Exception {
46         Configuration conf = new Configuration();
47
48         // 指定JobTracker地址
49         conf.set("mapred.job.tracker", "192.168.62.129:9001");
50         if (args.length != 2) {
51             System.err.println("Usage: Data Sort <in> <out>");
52             System.exit(2);
53         }
54         System.out.println(args[0]);
55         System.out.println(args[1]);
56
57         Job job = Job.getInstance(conf, "Data Sort");
58         job.setJarByClass(Sort.class);
59
60         //设置Map和Reduce处理类
61         job.setMapperClass(Map.class);
62         job.setReducerClass(Reduce.class);
63
64         //设置输出类型
65         job.setOutputKeyClass(IntWritable.class);
66         job.setOutputValueClass(IntWritable.class);
67
68         //设置输入和输出目录
69         FileInputFormat.addInputPath(job, new Path(args[0]));
70         FileOutputFormat.setOutputPath(job, new Path(args[1]));
71         System.exit(job.waitForCompletion(true) ? 0 : 1);
72     }
73 }

3.2 配置文件

把log4j.properties和hadoop集群中的core-site.xml加入到classpath中。我的示例工程是maven组织,因此放到src/main/resources目录。

程序执行时会从core-site.xml中获取hdfs地址。

3.3 程序执行

右键选择Run As -> Run Configurations…,在参数中填好输入输出目录,执行Run即可。

执行日志:

  1 hdfs://192.168.62.129:9000/user/vm/sort_in
  2 hdfs://192.168.62.129:9000/user/vm/sort_out
  3 15/07/27 16:21:36 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
  4 15/07/27 16:21:36 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
  5 15/07/27 16:21:36 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
  6 15/07/27 16:21:36 WARN mapreduce.JobSubmitter: No job jar file set.  User classes may not be found. See Job or Job#setJar(String).
  7 15/07/27 16:21:36 INFO input.FileInputFormat: Total input paths to process : 3
  8 15/07/27 16:21:36 INFO mapreduce.JobSubmitter: number of splits:3
  9 15/07/27 16:21:36 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
 10 15/07/27 16:21:37 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1592166400_0001
 11 15/07/27 16:21:37 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
 12 15/07/27 16:21:37 INFO mapreduce.Job: Running job: job_local1592166400_0001
 13 15/07/27 16:21:37 INFO mapred.LocalJobRunner: OutputCommitter set in config null
 14 15/07/27 16:21:37 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
 15 15/07/27 16:21:37 INFO mapred.LocalJobRunner: Waiting for map tasks
 16 15/07/27 16:21:37 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_m_000000_0
 17 15/07/27 16:21:37 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
 18 15/07/27 16:21:37 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [email protected]
 19 15/07/27 16:21:37 INFO mapred.MapTask: Processing split: hdfs://192.168.62.129:9000/user/vm/sort_in/file1:0+25
 20 15/07/27 16:21:37 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
 21 15/07/27 16:21:37 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
 22 15/07/27 16:21:37 INFO mapred.MapTask: soft limit at 83886080
 23 15/07/27 16:21:37 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
 24 15/07/27 16:21:37 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
 25 15/07/27 16:21:37 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
 26 15/07/27 16:21:38 INFO mapred.LocalJobRunner:
 27 15/07/27 16:21:38 INFO mapred.MapTask: Starting flush of map output
 28 15/07/27 16:21:38 INFO mapred.MapTask: Spilling map output
 29 15/07/27 16:21:38 INFO mapred.MapTask: bufstart = 0; bufend = 56; bufvoid = 104857600
 30 15/07/27 16:21:38 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214372(104857488); length = 25/6553600
 31 15/07/27 16:21:38 INFO mapred.MapTask: Finished spill 0
 32 15/07/27 16:21:38 INFO mapred.Task: Task:attempt_local1592166400_0001_m_000000_0 is done. And is in the process of committing
 33 15/07/27 16:21:38 INFO mapred.LocalJobRunner: map
 34 15/07/27 16:21:38 INFO mapred.Task: Task ‘attempt_local1592166400_0001_m_000000_0‘ done.
 35 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_m_000000_0
 36 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_m_000001_0
 37 15/07/27 16:21:38 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
 38 15/07/27 16:21:38 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [email protected]
 39 15/07/27 16:21:38 INFO mapred.MapTask: Processing split: hdfs://192.168.62.129:9000/user/vm/sort_in/file2:0+15
 40 15/07/27 16:21:38 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
 41 15/07/27 16:21:38 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
 42 15/07/27 16:21:38 INFO mapred.MapTask: soft limit at 83886080
 43 15/07/27 16:21:38 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
 44 15/07/27 16:21:38 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
 45 15/07/27 16:21:38 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
 46 15/07/27 16:21:38 INFO mapred.LocalJobRunner:
 47 15/07/27 16:21:38 INFO mapred.MapTask: Starting flush of map output
 48 15/07/27 16:21:38 INFO mapred.MapTask: Spilling map output
 49 15/07/27 16:21:38 INFO mapred.MapTask: bufstart = 0; bufend = 32; bufvoid = 104857600
 50 15/07/27 16:21:38 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214384(104857536); length = 13/6553600
 51 15/07/27 16:21:38 INFO mapred.MapTask: Finished spill 0
 52 15/07/27 16:21:38 INFO mapred.Task: Task:attempt_local1592166400_0001_m_000001_0 is done. And is in the process of committing
 53 15/07/27 16:21:38 INFO mapred.LocalJobRunner: map
 54 15/07/27 16:21:38 INFO mapred.Task: Task ‘attempt_local1592166400_0001_m_000001_0‘ done.
 55 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_m_000001_0
 56 15/07/27 16:21:38 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_m_000002_0
 57 15/07/27 16:21:38 INFO mapreduce.Job: Job job_local1592166400_0001 running in uber mode : false
 58 15/07/27 16:21:38 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
 59 15/07/27 16:21:38 INFO mapreduce.Job:  map 100% reduce 0%
 60 15/07/27 16:21:38 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [email protected]
 61 15/07/27 16:21:38 INFO mapred.MapTask: Processing split: hdfs://192.168.62.129:9000/user/vm/sort_in/file3:0+8
 62 15/07/27 16:21:39 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
 63 15/07/27 16:21:39 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
 64 15/07/27 16:21:39 INFO mapred.MapTask: soft limit at 83886080
 65 15/07/27 16:21:39 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
 66 15/07/27 16:21:39 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
 67 15/07/27 16:21:39 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
 68 15/07/27 16:21:39 INFO mapred.LocalJobRunner:
 69 15/07/27 16:21:39 INFO mapred.MapTask: Starting flush of map output
 70 15/07/27 16:21:39 INFO mapred.MapTask: Spilling map output
 71 15/07/27 16:21:39 INFO mapred.MapTask: bufstart = 0; bufend = 24; bufvoid = 104857600
 72 15/07/27 16:21:39 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214388(104857552); length = 9/6553600
 73 15/07/27 16:21:39 INFO mapred.MapTask: Finished spill 0
 74 15/07/27 16:21:39 INFO mapred.Task: Task:attempt_local1592166400_0001_m_000002_0 is done. And is in the process of committing
 75 15/07/27 16:21:39 INFO mapred.LocalJobRunner: map
 76 15/07/27 16:21:39 INFO mapred.Task: Task ‘attempt_local1592166400_0001_m_000002_0‘ done.
 77 15/07/27 16:21:39 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_m_000002_0
 78 15/07/27 16:21:39 INFO mapred.LocalJobRunner: map task executor complete.
 79 15/07/27 16:21:39 INFO mapred.LocalJobRunner: Waiting for reduce tasks
 80 15/07/27 16:21:39 INFO mapred.LocalJobRunner: Starting task: attempt_local1592166400_0001_r_000000_0
 81 15/07/27 16:21:39 INFO util.ProcfsBasedProcessTree: ProcfsBasedProcessTree currently is supported only on Linux.
 82 15/07/27 16:21:39 INFO mapred.Task:  Using ResourceCalculatorProcessTree : [email protected]49250068
 83 15/07/27 16:21:39 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: [email protected]
 84 15/07/27 16:21:39 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=652528832, maxSingleShuffleLimit=163132208, mergeThreshold=430669056, ioSortFactor=10, memToMemMergeOutputsThreshold=10
 85 15/07/27 16:21:39 INFO reduce.EventFetcher: attempt_local1592166400_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
 86 15/07/27 16:21:40 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1592166400_0001_m_000002_0 decomp: 32 len: 36 to MEMORY
 87 15/07/27 16:21:40 INFO reduce.InMemoryMapOutput: Read 32 bytes from map-output for attempt_local1592166400_0001_m_000002_0
 88 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 32, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->32
 89 15/07/27 16:21:40 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1592166400_0001_m_000000_0 decomp: 72 len: 76 to MEMORY
 90 15/07/27 16:21:40 INFO reduce.InMemoryMapOutput: Read 72 bytes from map-output for attempt_local1592166400_0001_m_000000_0
 91 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 72, inMemoryMapOutputs.size() -> 2, commitMemory -> 32, usedMemory ->104
 92 15/07/27 16:21:40 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1592166400_0001_m_000001_0 decomp: 42 len: 46 to MEMORY
 93 15/07/27 16:21:40 INFO reduce.InMemoryMapOutput: Read 42 bytes from map-output for attempt_local1592166400_0001_m_000001_0
 94 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 42, inMemoryMapOutputs.size() -> 3, commitMemory -> 104, usedMemory ->146
 95 15/07/27 16:21:40 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
 96 15/07/27 16:21:40 INFO mapred.LocalJobRunner: 3 / 3 copied.
 97 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: finalMerge called with 3 in-memory map-outputs and 0 on-disk map-outputs
 98 15/07/27 16:21:40 INFO mapred.Merger: Merging 3 sorted segments
 99 15/07/27 16:21:40 INFO mapred.Merger: Down to the last merge-pass, with 3 segments left of total size: 128 bytes
100 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: Merged 3 segments, 146 bytes to disk to satisfy reduce memory limit
101 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: Merging 1 files, 146 bytes from disk
102 15/07/27 16:21:40 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce
103 15/07/27 16:21:40 INFO mapred.Merger: Merging 1 sorted segments
104 15/07/27 16:21:40 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 136 bytes
105 15/07/27 16:21:40 INFO mapred.LocalJobRunner: 3 / 3 copied.
106 15/07/27 16:21:40 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
107 15/07/27 16:21:40 INFO mapred.Task: Task:attempt_local1592166400_0001_r_000000_0 is done. And is in the process of committing
108 15/07/27 16:21:40 INFO mapred.LocalJobRunner: 3 / 3 copied.
109 15/07/27 16:21:40 INFO mapred.Task: Task attempt_local1592166400_0001_r_000000_0 is allowed to commit now
110 15/07/27 16:21:40 INFO output.FileOutputCommitter: Saved output of task ‘attempt_local1592166400_0001_r_000000_0‘ to hdfs://192.168.62.129:9000/user/vm/sort_out/_temporary/0/task_local1592166400_0001_r_000000
111 15/07/27 16:21:40 INFO mapred.LocalJobRunner: reduce > reduce
112 15/07/27 16:21:40 INFO mapred.Task: Task ‘attempt_local1592166400_0001_r_000000_0‘ done.
113 15/07/27 16:21:40 INFO mapred.LocalJobRunner: Finishing task: attempt_local1592166400_0001_r_000000_0
114 15/07/27 16:21:40 INFO mapred.LocalJobRunner: reduce task executor complete.
115 15/07/27 16:21:40 INFO mapreduce.Job:  map 100% reduce 100%
116 15/07/27 16:21:41 INFO mapreduce.Job: Job job_local1592166400_0001 completed successfully
117 15/07/27 16:21:41 INFO mapreduce.Job: Counters: 38
118     File System Counters
119         FILE: Number of bytes read=3834
120         FILE: Number of bytes written=1017600
121         FILE: Number of read operations=0
122         FILE: Number of large read operations=0
123         FILE: Number of write operations=0
124         HDFS: Number of bytes read=161
125         HDFS: Number of bytes written=62
126         HDFS: Number of read operations=41
127         HDFS: Number of large read operations=0
128         HDFS: Number of write operations=10
129     Map-Reduce Framework
130         Map input records=14
131         Map output records=14
132         Map output bytes=112
133         Map output materialized bytes=158
134         Input split bytes=339
135         Combine input records=0
136         Combine output records=0
137         Reduce input groups=13
138         Reduce shuffle bytes=158
139         Reduce input records=14
140         Reduce output records=14
141         Spilled Records=28
142         Shuffled Maps =3
143         Failed Shuffles=0
144         Merged Map outputs=3
145         GC time elapsed (ms)=10
146         CPU time spent (ms)=0
147         Physical memory (bytes) snapshot=0
148         Virtual memory (bytes) snapshot=0
149         Total committed heap usage (bytes)=1420296192
150     Shuffle Errors
151         BAD_ID=0
152         CONNECTION=0
153         IO_ERROR=0
154         WRONG_LENGTH=0
155         WRONG_MAP=0
156         WRONG_REDUCE=0
157     File Input Format Counters
158         Bytes Read=48
159     File Output Format Counters
160         Bytes Written=62

4. 可能出现的问题

4.1 权限问题,无法访问HDFS

修改集群hdfs-site.xml配置,关闭hadoop集群的权限校验。


<property>

<name>dfs.permissions</name>

<value>false</value>

</property>

4.2 出现NullPointerException异常

在环境变量中配置%HADOOP_HOME%为C:\Download\hadoop-2.6.0\

下载winutils.exe和hadoop.dll到C:\Download\hadoop-2.6.0\bin

注意:网上很多资料说的是下载hadoop-common-2.2.0-bin-master.zip,但很多不支持hadoop2.6.0版本。需要下载支持hadoop2.6.0版本的程序。

4.3 程序执行失败

需要执行Run on Hadoop,而不是Java Application。

时间: 2024-10-20 23:56:44

搭建Hadoop2.6.0+Eclipse开发调试环境的相关文章

搭建Hadoop2.5.2+Eclipse开发调试环境

一.简介 为了开发调试方便,本文介绍在Eclipse下搭建开发环境,连接和提交任务到Hadoop集群. 二.安装前准备: 1)Eclipse:Luna 4.4.1 2)eclipse插件:hadoop-eclipse-plugin-2.6.0.jar 3)hadoop版本:hadoop-2.6.0.tar.gz 三.环境搭建 1.安装eclipse 2.安装插件 将插件hadoop-eclipse-plugin-2.5.2.jar,下载后放到eclipse/plugins目录即可 3.配置had

手把手教hadoop2.5.1+eclipse开发调试环境搭建(2)

前一篇博文我们搭建了好了运行环境,这篇小文我们开始搭建开发调试环境.这才是真正的精华,是无数血泪铸就的! 4.eclipse,又见eclipse 这个我想只要是做java的没有不熟悉,因此我就不再多说了,一切向http://www.eclipse.org索取. 注意,这里的eclipse环境安装在虚拟机中哦,别装错地方了! 5.安装maven环境 去maven.apache.org上下载maven3,解压到/home(因为/home一般是数据盘,装在这里不占系统盘的空间).配置~/.bash_p

android开发-wifi连接eclipse开发调试环境

android开发请远离数据线! 方法很简单: 第一步,首先你需要在你的手机上安装一个终端模拟器工具,这里我推荐 androidterm_1,0,48.apk,搜下各大app store都会下载到. 第二步,在手机打开这个终端工具,输入命令: su//获取root权限 setprop service.adb.tcp.port 5555//设置监听的端口,端口可以自定义,如5554,5555是默认的 stop adbd//关闭adbd start adbd//重新启动adbd 第三步,记录下你手机

(转)Eclipse下搭建Hadoop2.4.0开发环境

Eclipse下搭建Hadoop2.4.0开发环境 一.安装Eclipse 下载Eclipse,解压安装,例如安装到/usr/local,即/usr/local/eclipse 4.3.1版本下载地址:http://pan.baidu.com/s/1eQkpRgu 二.在eclipse上安装hadoop插件 1.下载hadoop插件 下载地址:http://pan.baidu.com/s/1mgiHFok 此zip文件包含了源码,我们使用使用编译好的jar即可,解压后,release文件夹中的h

Solr4.8.0源码分析(4)之Eclipse Solr调试环境搭建

Solr4.8.0源码分析(4)之Eclipse Solr调试环境搭建 由于公司里的Solr调试都是用远程jpda进行的,但是家里只有一台电脑所以不能jpda进行调试,这是因为jpda的端口冲突.所以只能在Eclipse 搭建Solr的环境,折腾了一小时终于完成了. 1. JDPA远程调试 搭建换完成Solr环境后,对${TOMCAT_HOME}/bin/startup.sh 最后一行进行修改,如下所示: 1 set JPDA_ADDRESS=7070 2 exec "$PRGDIR"

在Win7虚拟机下搭建Hadoop2.6.0+Spark1.4.0单机环境

Hadoop的安装和配置可以参考我之前的文章:在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境. 本篇介绍如何在Hadoop2.6.0基础上搭建spark1.4.0单机环境. 1. 软件准备 scala-2.11.7.tgz spark-1.4.0-bin-hadoop2.6.tgz 都可以从官网下载. 2. scala安装和配置 scala-2.11.7.tgz解压缩即可.我解压缩到目录/home/vm/tools/scala,之后配置~/.bash_profile环境变量. #sca

配置Windows 2008 R2 64位 Odoo 8.0/9.0 源码开发调试环境

安装过程中,需要互联网连接下载python依赖库: 1.安装: Windows Server 2008 R2 x64标准版 2.安装: Python 2.7.10 amd64 到C:\Python27 并将下列路径加到PATH环境变量: C:\Python27\;C:\Python27\Scripts; 3.安装: Oracle jdk 1.7 到C:\Java 并配置 JAVA_HOME 环境变量,如 C:\Java\jdk1.7.0_71 4.安装: PostgreSQL 9.4.4-3 x

在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境

近几年大数据越来越火热.由于工作需要以及个人兴趣,最近开始学习大数据相关技术.学习过程中的一些经验教训希望能通过博文沉淀下来,与网友分享讨论,作为个人备忘. 第一篇,在win7虚拟机下搭建hadoop2.6.0伪分布式环境. 1. 所需要的软件 使用Vmware 11.0搭建虚拟机,安装Ubuntu 14.04.2系统. Jdk 1.7.0_80 Hadoop 2.6.0 2. 安装vmware和ubuntu 略 3. 在ubuntu中安装JDK 将jdk解压缩到目录:/home/vm/tool

PHP开发调试环境配置

——基于wamp和Eclipse for PHP Developers 引言 为了搭建PHP开发调试环境,我曾经在网上查阅了无数的资料,但没有一种真正能够行的通的.因为PHP开发环境需要很多种软件相互配合,软件之间版本必须相互匹配,而具体到底怎么个匹配法也很难说,至于最新版本的软件之间相互匹配就更加缺少相应的资料了.哪怕版本之间有细微的版本不匹配情况,最后的结果都会是徒劳无功. 不过,通过不懈的坚持和努力,在失败了一次又一次之后,终于在凌晨1点半将PHP开发调试环境全部搭建完毕,看到运行网页后,