数学竞赛 组合类问题(1)

在单位正方形周界上的两个点连接一条直线,如果这条直线把正方形分成面积相等的两部分,试证该直线长度不小于1

证明:该题非常简单。先证明这条直线必然过正方形中心点O:

假设1线不过中心点O且分成面积相等的两部分,过O作平行于1的直线2,易知2将正方形分成S=的两部分,所以1肯定没把正方形分成S=的两部分,与假设矛盾,所以这条直线必然过正方形中心点O。而过O点且两端点在正方形周界上的线段的长度不小于一,所以命题得证。

原文地址:https://www.cnblogs.com/lau1997/p/12546893.html

时间: 2024-10-18 02:24:42

数学竞赛 组合类问题(1)的相关文章

[家里蹲大学数学杂志]第254期第五届[2013年]全国大学生数学竞赛[数学类]试题

1 ($15'$) 平面 $\bbR^2$ 上两个半径为 $r$ 的圆 $C_1$ 和 $C_2$ 外切于 $P$ 点, 将圆 $C_2$ 沿 $C_1$ 的圆周 (无滑动) 滚动一周, 这时, $C_2$ 上的 $P$ 点也随 $C_2$ 的运动而运动. 记 $\vGa$ 为 $P$ 点的运动轨迹曲线, 称为心脏线. 现设 $C$ 为以 $P$ 的初始位置 (切点) 为圆心的圆, 其半径为 $R$, 记 $$\bex \gamma:\ \bbR^2\cup\sed{\infty}\to \bb

高中数学排列组合

一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排.由分步计数原理可得共有种不同

数字(数学)操作类 Math Random 类 ,大数字操作类

Math 提供了大量的数学操作方法 Math类中所有的方法都是static 方法 重点看这个操作,四舍五入 System.out.println(Math.round(-16.5)) ; -16 System.out.println(Math.round(16.5)) ; 17 大于等于0.5进位. Random类 取得随机数的类 java.util 包 产生100之内的随机整数 Random rand = new Random() ; for(int x = 0 ; x < 10 ; x ++

赣南师范学院数学竞赛培训第06套模拟试卷参考解答

1. 设 $f(\al,\beta)$ 为线性空间 $V$ 上的非退化双线性函数, 试证: $$\bex \forall\ g\in V^*,\ \exists\ |\ \al\in V,\st f(\al,\beta)=g(\beta),\quad \forall\ \beta\in V. \eex$$ 证明: (1) 唯一性: 设 $\tilde\al$ 也适合题意, 则 $$\beex \bea &\quad f(\al,\beta)=f(\tilde\al,\beta),\quad \f

赣南师范学院数学竞赛培训第05套模拟试卷参考解答

1. (1) 设 $f(x)$ 在 $[0,1]$ 上有界, 在 $x=1$ 处连续, 试求极限 $\dps{\vlm{n}n\int_0^1 x^{n-1}f(x)\rd x}$. (2) 计算以下渐近等式 $$\bex \int_0^1 \cfrac{x^{n-1}}{1+x}\rd x=\cfrac{a}{n}+\cfrac{b}{n^2}+o\sex{\cfrac{1}{n^2}}\quad(n\to\infty) \eex$$ 中的待定常数 $a,b$. 解答: (1) 由 $f$ 在

丘成桐大学生数学竞赛2010年分析与方程个人赛试题参考解答

1 (1)Let {xk}nk=1?(0,π) , and define x=1n∑k=1nxi. Show that ∏k=1nsinxkxk≤(sinxx)n. Proof. Direct computations show (lnsinxx)′′=(lnsinx?lnx)′′=?1sin2x+1x2<0, for all x∈(0,π) . Thus lnsinxx is a concave function in (0,π) . Jensen's inequality then yiel

数学竞赛作业题解答-1:因式分解之换元法(初中基础班)

本题为猿辅导2017年秋季初中数学竞赛基础班作业题,适合初一以上数学爱好者作答. 问题: 将 $5^{1995} - 1$ 分解为三个整数之积,且每一个因数都大于 $5^{100}$. 解答: 由 $1995 = 5\times399$, 考虑换元并使用基本乘法公式:$a^5 - 1 = (a - 1)\left(a^4 + a^3 + a^2 + a + 1\right)$. 令 $5^{399} = n$, 可得 $$5^{1995} - 1 = n^5 - 1 = (n - 1)\left

赣南师范学院数学竞赛培训第01套模拟试卷参考解答

1. 设 $f,g$ 是 $[a,b]$ 上的连续函数. (1) 对 $1<p<q<\infty$, $\cfrac{1}{p}+\cfrac{1}{q}=1, a,b>0$, 试证: $$\bex ab\leq \cfrac{1}{p}a^p+\cfrac{1}{q}b^q. \eex$$ (2) 设 $\dps{\vsm{n}a_n}$ 为收敛的正项级数, 试证: $\dps{\vsm{n}a_n^{1-\frac{1}{n}}}$ 也收敛. (3) 对 $1\leq p\le

数学奥林匹克问题解答:猿辅导初中数学竞赛基础特训营作业题

猿辅导(点击进入官网)初中数学竞赛基础特训营于2016年8月27-31日在网络上举行,五天课程总计上课人数超过3万人.授课内容包括四个专题:整数的基本性质.抽屉原理初步.方程与不等式及平面几何新讲初步.以下为本次特训营作业题解答. 1.$a, b$ 是任意自然数, 试证明: $30\ \big{|}\ \left[ab(a^4 - b^4)\right]$. (Hungary) 证明: $$ab(a^4 - b^4) = ab\left[\left(a^4 - 1\right) - \left(