随机游走模型(RandomWalk Mobility)

随机游走模型由首先由爱因斯坦在1926年以数学方式描述。由于自然界中的许多实体会以不可预知的方式移动,因此随机游走模型用来描述这种不稳定的移动。在这种移动模型中,移动节点随机选择一个方向和速度来从当前位置移动到新的位置。新的速度和方向分别从预定义的范围【speedmin,speedmax】和【0,2】。移动节点的每次移动会以恒定的时间间隔t或恒定的行进距离d进行,结束后会计算新的方向和速度。如果此模型的移动节点到达模拟边界,则它将从模拟边界“弹回”,其角度有入射方向确定,然后沿着这条路径继续移动。

许多随机游走模型已经被研究,包括一维,二维,三维和d-维游走。在1921年,Polya证明在一维或二维的随机游走能够完全确定地返回远点,这一特征确保随机游走模型代表了一种移动模型----可以测试移动节点在其起点附近的移动,不用担心移动节点因游走而永远回不到起点。

二维随机游走模型是热点。下图显示了一个二维随机游走模型的仿真例子。移动节点在300*600的模拟区域从起点(150,300)移动。在每个拐点,移动节点随机选择【0,2】的方向,选择【0,10】m/s的速度。在改变方向与速度之前,移动节点移动60秒。在随机游走模型中,移动节点可以在行进指定距离之后改变方向而不是指定时间。图1的移动节点在改变方向和速度之前总共行进10步(而不是60秒),与图一不同,图二的每次移动都是完全相同的聚类。

随机游走模型有时被称为布朗运动。在使用模型时,可以简化,Basagni等人在模拟实验中,为每个移动节点分配相同的速度,简化随机游走模型。

原文地址:https://www.cnblogs.com/bjut-lqq/p/9402368.html

时间: 2024-10-21 19:51:10

随机游走模型(RandomWalk Mobility)的相关文章

随机游走模型(Random Walk)

给定了一个时间顺序向量\(z_1,...,z_T\),rw模型是由次序r来定义的,\(z_t\)仅取决于前\(t-r\)个元素.当r = 1时为最简单的RW模型. 给定了向量的其他元素,\(z_t\)的条件分布为: \(z_t|z_{t-1} ~ Normal(z_{t-1} ,\sigma^2)\) 原文地址:https://www.cnblogs.com/jiaxinwei/p/12304503.html

随机游走

在python中,可以利用数组操作来模拟随机游走. 下面是一个单一的200步随机游走的例子,从0开始,步长为1和-1,且以相等的概率出现.纯Python方式实现,使用了内建的 random 模块: # 随机游走 import matplotlib.pyplot as plt import random position = 0 walk = [position] steps = 200 for i in range(steps): step = 1 if random.randint(0, 1)

随机游走的matlab实现

<span style="font-family:KaiTi_GB2312;font-size:14px;">%随机游走产生图像效果实现,随机游走类似布朗运动,就是随机的向各个方向走</span> <span style="font-family:KaiTi_GB2312;font-size:14px;"><span style="color: rgb(68, 68, 68); line-height: 21px;

bzoj 3143 随机游走

题意: 给一个简单无向图,一个人从1号节点开始随机游走(即以相同概率走向与它相邻的点),走到n便停止,问每条边期望走的步数. 首先求出每个点期望走到的次数,每条边自然是从它的两个端点走来. 1 /************************************************************** 2 Problem: 3143 3 User: idy002 4 Language: C++ 5 Result: Accepted 6 Time:736 ms 7 Memory:

[PKUWC 2018]随机游走

Description 题库链接 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\) ,求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 \(998244353\) 取模. Solution 不妨设 \(f_{i,S}\) 表示在点 \(i\) 时,要遍历集合

带黑洞的随机游走问题

对于无黑洞的随机游走问题可以使用线性方程组求解,对于有黑洞的随机游走问题就无法使用线性方程组进行求解了. 有黑洞的随机游走问题举例: 随机给定一个魔方状态,随机旋转期望通过多少步才能旋转到目标状态? 醉汉回家问题:一个人在x点处喝醉了,在N维空间中游走,它回到出发点的概率是多少?求p(N) zhihu 一个整型数字x=6000,每次增长101的概率为49.32%,每次减少100元的概率为50.68%,问最终x&tt;7000的概率是多少? 显然,这个问题相当于一个随机游走问题,一共有100~70

「Luogu4321」随机游走

「Luogu4321」随机游走 题目描述 有一张 \(n\) 个点 \(m\) 条边的无向图,\(Q\) 组询问,每次询问给出一个出发点和一个点集 \(S\) ,求从出发点出发随机游走走遍这个点集的期望步数. \(1 \leq n \leq 18, 1 \leq Q \leq 10^5\) 解题思路 : 听说是 \(\text{pkuwc2018d2t3}\) 加强版?但是原题时限是1s,各种卡不进去感觉一定要写 \(\text{Min-Max}\) 容斥,不过反正我今年听指导建议没报 \(\t

Loj #2542. 「PKUWC2018」随机游走

Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一直随机游走,直到点集 \(S\) 中所有点都至少经过一次的话,期望游走几步. 特别地,点 \(x\)(即起点)视为一开始就被经过了一次. 答案对 $998244353 $ 取模. 输入格式 第一行三个正整数 \(n,Q,x\). 接下来 \(

[PKUWC2018]随机游走

题目大意 给你一颗树和根,每次询问从根出发,随机走到有连边的结点,经过集合S中所有结点的步数期望 \(1 \leq n \leq 18,1 \leq Q \leq 5000\) 解题思路 首先我们要求出所有集合\(S\)经过至少一个\(S\)中的点的步数期望(为最值反演铺垫) 令\(dp_{S,i}\)表示以i为起点,要经过集合S中至少一个点的步数期望 那么\(dp_{S,i}=\frac{1}{dig_i}(dp_{S,fa_i}+1+\sum_{v\in son}{dp_{S,v}+1})\