Deep Residual Learning for Image Recognition

Kaiming He
Xiangyu Zhang
Shaoqing Ren
Microsoft Research

{kahe, v-xiangz, v-shren, jiansun}@microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8×
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

The depth of representations is of central importance
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions 1 , where we also won the 1st
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO segmentation.

原文地址:https://www.cnblogs.com/2008nmj/p/9119579.html

时间: 2024-10-09 02:34:48

Deep Residual Learning for Image Recognition的相关文章

Deep Residual Learning for Image Recognition (ResNet)

目录 主要内容 代码 He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]. computer vision and pattern recognition, 2016: 770-778. @article{he2016deep, title={Deep Residual Learning for Image Recognition}, author={He, Kaiming and Zhang,

Deep Residual Learning for Image Recognition(MSRA-深度残差学习)

ABSTRACT: 1.Deeper neural networks are more difficult to train. 2.We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. 3.We explicitly reformulate the layers as learning r

论文学习:Deep residual learning for image recognition

目录 I. Overview II. Degradation III. Solution & Deep residual learning IV. Implementation & Shortcut connections Home page https://github.com/KaimingHe/deep-residual-networks TensorFlow实现: https://github.com/tensorpack/tensorpack/tree/master/exampl

Paper | Deep Residual Learning for Image Recognition

目录 1. 故事 2. 残差学习网络 2.1 残差块 2.2 ResNet 2.3 细节 3. 实验 3.1 短连接网络与plain网络 3.2 Projection解决短连接维度不匹配问题 3.3 更深的bottleneck结构 ResNet的意义已经不需要我在这里赘述.该文发表在2016 CVPR,至今(2019.10)已有3万+引用.由于ResNet已经成为大多数论文的baseline,因此我们着重看其训练细节.测试细节以及bottleneck等思想. 核心: We explicitly

Deep Residual Learning for Image Recognition(残差网络)

深度在神经网络中有及其重要的作用,但越深的网络越难训练. 随着深度的增加,从训练一开始,梯度消失或梯度爆炸就会阻止收敛,normalized initialization和intermediate normalization能够解决这个问题.但依旧会出现degradation problem:随着深度的增加,准确率会达到饱和,再持续增加深度则会导致准确率下降.这个问题不是由于过拟合造成的,因为训练误差也会随着深度增加而增大. 假定输入是x,期望输出是H(x),如果我们直接把输入x传到输出作为初始

ResNet——Deep Residual Learning for Image Recognition

1. 摘要 更深的神经网络通常更难训练,作者提出了一个残差学习的框架,使得比过去深许多的的网络训连起来也很容易. 在 ImageNet 数据集上,作者设计的网络达到了 152 层,是 VGG-19 的 8 倍,但却有着更低的复杂性.通过集成学习模型最终取得了 3.57% 的错误率,获得了 ILSVRC 2015 比赛的第一名. 表示的深度对于许多视觉识别任务而言至关重要,仅仅由于特别深的表示,作者在 COCO 物体检测数据集上获得了 28% 的相对改进. 2. 介绍 深度神经网络通常集成了低层.

Deep Residual Learning

最近在做一个分类的任务,输入为3通道车型图片,输出要求将这些图片对车型进行分类,最后分类类别总共是30个. 开始是试用了实验室师姐的方法采用了VGGNet的模型对车型进行分类,据之前得实验结果是训练后最高能达到92%的正确率,在采用了ImageNet训练过的DataLayer之后,可以达到97%的正确率,由于我没有进行长时间的运行测试,运行了十几个小时最高达到了92%的样子. 后来是尝试使用Deep Residual Learning的ImageNet(以后简称ResNet)的实现方法,十几个小

【阅读笔记】Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation

Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation 作者:Lin Yang, Yizhe Zhang, Jianxu Chen, Siyuan Zhang, Danny Z. Chen 针对问题: 1.医学方向训练集数据较少 2.仅专业人士能进行标注,耗费人力物力,数据集数量难以快速提升 贡献点: 1.提出了新的全卷积网络(FCN),在测试数据集上取得了很好的结果 2.

repost: Deep Reinforcement Learning

From: http://wanghaitao8118.blog.163.com/blog/static/13986977220153811210319/ accessed 2016-03-10 深度强化学习(Deep Reinforcement Learning)的资源 Google的Deep Mind团队2013年在NIPS上发表了一篇牛x闪闪的文章,亮瞎了好多人眼睛,不幸的是我也在其中.前一段时间收集了好多关于这方面的资料,一直躺在收藏夹中,目前正在做一些相关的工作(希望有小伙伴一起交流)