HDU 1024 最大M字段和

一道关于求最大M字段和的问题,翻译完题之后感觉很简单但就是写不来,后来仿佛推到一个dp式子了,对,仿佛...然后抄袭了个式子,嘿,和我的式子大体相似,然后就是很玄学的优化了...不多瞎bb了

1.首先,定义数组num[n],dp[m][n].
num[n]用来存储n个整数组成的序列.dp[i][j]用来表示由前 j项得到的含i个字段的最大值,且最后一个字段以num[j]项结尾。仔细想想,我们可以知:
dp[i][j]=max(dp[i][j-1]+num[j],dp(i-1,t)+num[j]) (i-1<=t<=j-1.)

2.优化
我们只要找到dp[i][j-1]和dp[i-1][t]的最大值加上num[j]即为dp[i][j].所以,定义一个数组pre_max[n],用pre_max[j-1]来表示求解dp[i][j]时dp[i-1][t],得:
dp[i][j]=max(pre_max[j-1],dp[i][j-1])+num[j].

3.再优化
在求解dp[i][j]的同时,我们可以计算出dp[i][t];i<=t<=j的最大值,这个最大值在计算dp[i+1][j+1]的时候需要作为pre_max[j]的形式被使用,我们先把它存在pre_max[n]中。通过时间的节省,我们突然间发现程序执行结束后pre_max[n]的值即为最后的结果,pre_max[n]数组才是我们希望求解的,

4.节省空间
dp[m][n]这个庞大的数组已经不是那么重要了,因此,我们现在用整型数maxx来代替dp[m][n],用来临时存储dp[i][j]的值,作为求解pre_max[n]的中介。这样就节省了dp[i][j]占用的极大的空间.

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 using namespace std;
 5 #define N 1000005
 6 int pre_max[N],num[N];
 7 int main()
 8 {
 9     int m,n,i,j,maxx;
10     while(~scanf("%d %d",&m,&n))
11     {
12         for(i=1;i<=n;i++)    scanf("%d",&num[i]);
13         memset(pre_max,0,sizeof(pre_max));
14         for(i=1;i<=m;++i)
15             {
16                 maxx=0;
17                 for(int k=1;k<=i;++k)   maxx+=num[k];
18                 pre_max[n]=maxx;
19
20                 for(j=i+1;j<=n;++j)
21                 {
22                     maxx=max(pre_max[j-1]+num[j],maxx+num[j]);
23                     pre_max[j-1]=pre_max[n];
24                     pre_max[n]=max(maxx,pre_max[n]);
25                 }
26             }
27         printf("%d\n",pre_max[n]);
28     }
29     return 0;
30 }
时间: 2024-12-29 07:00:57

HDU 1024 最大M字段和的相关文章

HDU 1024 Max Sum Plus Plus --- dp+滚动数组

HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值,其中第i个子序列包括a[j], 则max(dp[m][k]),m<=k<=n 即为所求的结果 <2>初始状态: dp[i][0] = 0, dp[0][j] = 0; <3>状态转移: 决策:a[j]自己成为一个子段,还是接在前面一个子段的后面 方程: a[j]直接接在前面

[2016-03-28][HDU][1024][Max Sum Plus Plus]

时间:2016-03-28 17:45:33 星期一 题目编号:[2016-03-28][HDU][1024][Max Sum Plus Plus] 题目大意:从n个数字提取出一定数字组成m个部分,使得这个部分的总和最大 分析: dp[i][j]表示前i段计算第j个数字,dp[i][j] = max(dp[i - 1][j - 1] + a[j],dp[i][k] + a[j]); #include <algorithm> #include <cstring> #include &

Hdu 1024 Max Sum Plus Plus (dp)

题目链接: Hdu 1024 Max Sum Plus Plus 题目描述: 给出n个数,问m段连续子序列的和相加最大是多少? 解题思路: dp[i][j]表示把前i个元素(包括第i个),分成j段的最大和.状态转移方程就是dp[i][j] = max (dp[i-1][j] + arr[j],  max( dp[k][j-1]) + arr[j]),其中0<k<i.(第i个元素是保存在第j段,还是自己单独成段) 由于1<=n<=1000,000.n*n的数组肯定会爆炸,所以要对方程

hdu 1024 Max Sum Plus Plus(DP)

转移方程dp[i][j]=Max(dp[i][j-1]+a[j],max(dp[i-1][k] ) + a[j] ) 0<k<j 此链接中有详解点击打开链接 #include<stdio.h> #include<algorithm> #include<iostream> using namespace std; #define MAXN 1000000 #define INF 0x7fffffff int dp[MAXN+10]; int mmax[MAXN

hdu 1024 MAX Sum Plus Plus【dp】

hdu 1024 题意:给定序列,求找出m个子序列的和使它们最大,子序列无交叉. 题解:又是最大子序列和增强版.但是这回让找m个,我还是没有思路.网上看到的思路无一例外都是: dp[i][j]表示前j个数分成i个子序列能获得的最大值.它有两大部分转移过来,一个是j是第i个序列的首元素,则dp[i][j]由dp[i-1][t]转移过来,即前t个数分成i-1个子序列:另一种自然就是第j个数不是第i个子序列的首元素,所以由前j-1个数分成i个子序列的状态dp[i][j-1]转移过来.但是数据很大,二维

HDU 1024 Max Sum Plus Plus Dp题解

本题就是求m段子段,而且要求这些子段加起来和最大,最大子段和的Plus版本. 不过题意真的不好理解,x,y什么的都没有说清楚. 知道题意就开始解题了,这肯定是动态规划法了. 动态规划法的程序不难写,关键是抽象思维. 这里的最小情况是只分成一段的时候,就退化为最大子段和问题了,这个是段数的最小情况了: 如果只有0个数的时候,结果肯定为零了,或者如果只有一个数的时候就是这个数了,那么数列只有0个或者1个的时候就是数组的最小情况了. 然后记录使用一个数组记录dp[MAX_N],其中dp[i]的含义就是

[kuangbin带你飞]专题十二 基础DP1 A - Max Sum Plus Plus HDU - 1024

A - Max Sum Plus Plus HDU - 1024 题目链接:https://vjudge.net/contest/68966#problem/A 题目: 现在我觉得你在Ignatius.L的“Max Sum”问题上得到了一个AC.要成为一个勇敢的ACMer,我们总是挑战自己更难的问题.现在你面临着一个更加困难的问题. 给定连续的数字序列S 1,S 2,S 3,S 4 ... S x,... S n(1≤x≤n≤1,000,000,-32768≤Sx≤32767).我们定义函数su

HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 29942    Accepted Submission(s): 10516 Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem

hdu 1024 Max Sum Plus Plus(简单dp)

题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1024 题意:给定一个数组,求其分成m个不相交子段和的最大值. 这题有点问题其实m挺小的但题目并没有给出. dp[i][j]表示取第i 位的数共取了j段然后转移方程显然为 dp[i][j]=max(dp[i - 1][j]+a[j] , max(dp[j - 1][j - 1]~dp[i - 1][j - 1]))(大致意思是取第i位要么i-1位取了j个那么a[j]刚好能与i-1拼成一段,或者j -