机器学习实战之第一章 机器学习基础

第1章 机器学习基础

机器学习 概述

机器学习就是把无序的数据转换成有用的信息。

  1. 获取海量的数据
  2. 从海量数据中获取有用的信息

我们会利用计算机来彰显数据背后的真实含义,这才是机器学习的意义。

机器学习 场景

例如:识别动物猫
模式识别(官方标准):人们通过大量的经验,得到结论,从而判断它就是猫。
机器学习(数据学习):人们通过阅读进行学习,观察它会叫、小眼睛、两只耳朵、四条腿、一条尾巴,得到结论,从而判断它就是猫。
深度学习(深入数据):人们通过深入了解它,发现它会‘喵喵‘的叫、与同类的猫科动物很类似,得到结论,从而判断它就是猫。(深度学习常用领域:语音识别、图像识别)

模式识别(pattern recognition): 模式识别是最古老的(作为一个术语而言,可以说是很过时的)。
    我们把环境与客体统称为“模式”,识别是对模式的一种认知,是如何让一个计算机程序去做一些看起来很“智能”的事情。
    通过融于智慧和直觉后,通过构建程序,识别一些事物,而不是人,例如: 识别数字。
机器学习(machine learning): 机器学习是最基础的(当下初创公司和研究实验室的热点领域之一)。
    在90年代初,人们开始意识到一种可以更有效地构建模式识别算法的方法,那就是用数据(可以通过廉价劳动力采集获得)去替换专家(具有很多图像方面知识的人)。
    “机器学习”强调的是,在给计算机程序(或者机器)输入一些数据后,它必须做一些事情,那就是学习这些数据,而这个学习的步骤是明确的。
    机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身性能的学科。
深度学习(deep learning): 深度学习是非常崭新和有影响力的前沿领域,我们甚至不会去思考-后深度学习时代。
    深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

参考地址:
http://www.csdn.net/article/2015-03-24/2824301
http://baike.baidu.com/link?url=76P-uA4EBrC3G-I__P1tqeO7eoDS709Kp4wYuHxc7GNkz_xn0NxuAtEohbpey7LUa2zUQLJxvIKUx4bnrEfOmsWLKbDmvG1PCoRkJisMTQka6-QReTrIxdYY3v93f55q

机器学习已应用于多个领域,远远超出大多数人的想象,横跨:计算机科学、工程技术和统计学等多个学科。

  • 搜索引擎: 根据你的搜索点击,优化你下次的搜索结果。
  • 垃圾邮件: 会自动的过滤垃圾广告邮件到垃圾箱内。
  • 超市优惠券: 你会发现,你在购买小孩子尿布的时候,售货员会赠送你一张优惠券可以兑换6罐啤酒。
  • 邮局邮寄: 手写软件自动识别寄送贺卡的地址。
  • 申请贷款: 通过你最近的金融活动信息进行综合评定,决定你是否合格。

机器学习 组成

主要任务

  • 分类:将实例数据划分到合适的类别中。
  • 回归:主要用于预测数值型数据。(示例:数据通过给定数据点来拟合最优曲线)

监督学习

  • 必须确定目标变量的值,以便机器学习算法可以发现特征和目标变量之间的关系。 (包括:分类和回归)
  • 样本集:训练数据 + 测试数据
    • 训练样本 = 特征(feature) + 目标变量(label: 分类-离散值/回归-连续值)
    • 特征通常是训练样本集的列,它们是独立测量得到的。
    • 目标变量: 目标变量是机器学习预测算法的测试结果。
      • 在分类算法中目标变量的类型通常是标称型(如:真与假),而在回归算法中通常是连续型(如:1~100)。
  • 知识表示
    1. 可以采用规则集的形式【例如:数学成绩大于90分为优秀】
    2. 可以采用概率分布的形式【例如:通过统计分布发现,90%的同学数学成绩,在70分以下,那么大于70分定为优秀】
    3. 可以使用训练样本集中的一个实例【例如:通过样本集合,我们训练出一个模型实例,得出 年轻,数学成绩中高等,谈吐优雅,我们认为是优秀】

非监督学习

  • 数据没有类别信息,也不会给定目标值。
  • 聚类:在无监督学习中,将数据集分成由类似的对象组成多个类的过程称为聚类。
  • 密度估计:将寻找描述数据统计值的过程称之为密度估计。【就是:根据训练样本确定x的概率分布】
  • 此外,无监督学习还可以减少数据特征的维度,以便我们可以使用二维或三维图形更加直观地展示数据信息。

训练过程

算法汇总

机器学习 使用

选择算法需要考虑的两个问题

  1. 算法场景

    • 预测明天是否下雨,因为可以用历史的天气情况做预测,所以选择监督学习算法
    • 给一群陌生的人进行分组,但是我们并没有这些人的类别信息,所以选择无监督学习算法、通过他们身高、体重等特征进行处理。
  2. 需要收集或分析的数据是什么

举例

机器学习 开发流程

* 收集数据: 收集样本数据
* 准备数据: 注意数据的格式
* 分析数据: 为了确保数据集中没有垃圾数据;
    如果是算法可以处理的数据格式或可信任的数据源,则可以跳过该步骤;
    另外该步骤需要人工干预,会降低自动化系统的价值。
* 训练算法: [机器学习算法核心]如果使用无监督学习算法,由于不存在目标变量值,则可以跳过该步骤
* 测试算法: [机器学习算法核心]评估算法效果
* 使用算法: 将机器学习算法转为应用程序

Python语言 优势

  1. 可执行伪代码
  2. Python比较流行:使用广泛、代码范例多、丰富模块库,开发周期短
  3. Python语言的特色:清晰简练、易于理解
  4. Python语言的缺点:唯一不足的是性能问题
  5. Python相关的库
    • 科学函数库:SciPyNumPy(底层语言:C和Fortran)
    • 绘图工具库:Matplotlib

时间: 2024-10-09 17:19:35

机器学习实战之第一章 机器学习基础的相关文章

机器学习总结之第一章绪论

机器学习总结之第一章绪论 http://www.cnblogs.com/kuotian/p/6141728.html 1.2基本术语 特征向量:即示例,反映事件或对象在某方面的性质.例如,西瓜的色泽,敲声. 属性:例如 青绿 乌黑 清脆. 数据集:例如(色泽=青绿,根蒂=蜷缩,敲声=浊响),(色泽=浅白,根蒂=硬挺,敲声=清脆),(色泽=乌黑,根蒂=稍蜷,敲声=沉闷)-- 例如,D = {X1,X2,--,Xm}表示包含m个示例的数据集. Xi = (xi1:xi2:--:xid)每个示例有d个

机器学习实战第8章预测数值型数据:回归

1.简单的线性回归 假定输入数据存放在矩阵X中,而回归系数存放在向量W中,则对于给定的数据X1,预测结果将会是 这里的向量都默认为列向量 现在的问题是手里有一些x和对应的y数据,怎样才能找到W呢?一个常用的方法是找到使误差最小的W,这里的误差是指预测y值与真实y值之间的差值,使用该误差的简单累加将使得正差值和负差值相互抵消,所以我们采用平方误差. 平方误差可以写做: 用矩阵表示可以写成 使用上式对w进行求导: 具体可参考https://blog.csdn.net/nomadlx53/articl

下载大数据实战课程第一季Python基础和网络爬虫数据分析

python语言近年来越来越被程序相关人员喜欢和使用,因为其不仅简单容易学习和掌握,而且还有丰富的第三方程序库和相应完善的管理工具:从命令行脚本程序到gui程序,从B/S到C/S,从图形技术到科学计算,软件开发到自动化测试,从云计算到虚拟化,所有这些领域都有python的身影:python已经深入到程序开发的各个领域,并且会越来越多的人学习和使用. 大数据实战课程第一季Python基础和网络爬虫数据分析,刚刚入手,转一注册文件,视频的确不错,可以先下载看看:链接:http://pan.baidu

APUE学习笔记:第一章 UNUX基础知识

1.2 UNIX体系结构 从严格意义上,可将操作系统定义为一种软件(内核),它控制计算机硬件资源,提供程序运行环境.内核的接口被称为系统调用.公用函数库构建在系统调用接口之上,应用软件即可使用公用函数库,也可使用系统调用.shell是一种特殊的应用程序,它为运行其他应用程序提供了一个接口 从广义上,操作系统包括了内核和一些其他软件,这些软件使得计算机能够发挥作用,并给予计算机以独有的特性(软件包括系统实用程序,应用软件,shell以及公用函数库等) 1.3  shell shell是一个命令行解

萌新向Python数据分析及数据挖掘 第一章 Python基础 (上)未排版

因word和博客编辑器格式不能完全对接,正在重新排版,2019年1月1日发出第一章完整版 本文将参考<Python编程 从入门到实践>的讲述顺序和例子,加上自己的理解,让大家快速了解Python的基础用法,并将拓展内容的链接添加在相关内容之后,方便大家阅读. 好了!我们开始第一章的学习. 第一章 Python基础 python安装以及环境搭建 python的安装和环境变量的配置通过百度查询即可解决,这里不作赘述. IDE的选择:因为后期需要用来做数据分析,所以直接安装Anaconda会是一个不

萌新向Python数据分析及数据挖掘 第一章 Python基础 第一节 python安装以及环境搭建 第二节 变量和简单的数据类型

本文将参考<Python编程 从入门到实践>的讲述顺序和例子,加上自己的理解,让大家快速了解Python的基础用法,并将拓展内容的链接添加在相关内容之后,方便大家阅读. 好了!我们开始第一章的学习. 第一章 Python基础 第一节 Python安装以及环境搭建 Python的安装和环境变量的配置通过百度查询即可解决,这里不作赘述. IDE的选择:因为后期需要用来做数据分析,所以直接安装Anaconda会是一个不错的选择. Anaconda详细安装使用教程 https://blog.csdn.

萌新向Python数据分析及数据挖掘 第一章 Python基础 第八节 函数

第一章 Python基础 第八节 函数 定义函数 函数 其实就可以理解为外挂,把一些常用的.重复率比较多你又不想重复写的东西写进函数,加上开关实现简化操作 举个简单的例子 1 def greet_user(username): 2 #定义一个叫做"迎接用户"的外挂,让他能直接打印一个问候语,括号里面是函数需要输入的东西,也就是个性化的东西 3 """先是简单的问候语""" 4 print("Hello! "

萌新向Python数据分析及数据挖掘 第一章 Python基础 第九节 类

第一章 Python基础 第九节 类 面向对象编程时,都会遇到一个概念,类,python也有这个概念,下面我们通过代码来深入了解下. 其实类 和函数都是为了节省代码,有了类的的概念,就可以把相同的代码写在父类,子类继承后就可以直接使用,而且通过选择对应的父类就可以直接使用对应父类的内容. 创建和使用类 1 class Dog(): #认识狗这类东西 2 def __init__(self, name, age): #狗是肯定有名字和年龄的,是个狗就有,要用户填写 3 self.name = na

萌新向Python数据分析及数据挖掘 第一章 Python基础 第十节 文件和异常

第一章 Python基础 第十节 文件和异常 从文件中读取数据 读取文件.文件路径   1 filename = 'pi_digits.txt' #文件名取个代号 2 #读取整个文件 3 with open(filename) as file_object: 4 contents = file_object.read()# 给内容取个代号 5 print(contents.rstrip()) 6 #逐行读取 7 with open(filename) as file_object: 8 for