STM32F103 使用TIM3产生四路PWM

STM32F103 使用TIM3产生四路PWM

程序如下:

/*******************************************************************************
* 程序说明         : 思路PWM波生成函数
* 函数功能         : 使用TIM3的PWM功能生成思路PWM,
* 输    入         : 无
* 输    出         : 四路PWM,通过GPIO引脚复用,对TIM3的四个输出通道引脚重映射为PC6、PC7、PC8、PC9
*******************************************************************************/

#include"stm32f10x.h"

void RCC_Cfg(void);
void GPIO_Cfg(void);
void TIM_Cfg(void);
void NVIC_Cfg(void);
void delay_ms(u32 i);
void PWM_Cfg(float dutyfactor1,float dutyfactor2,float dutyfactor3,float dutyfactor4);

int main()
{
    u8 flag = 1;
      float ooo=0.5;
    RCC_Cfg();
    NVIC_Cfg();
    GPIO_Cfg();
    TIM_Cfg();

    //开启定时器2
    TIM_Cmd(TIM3,ENABLE);

      //呼吸灯
    while(1){
            PWM_Cfg(ooo,10,50+0.5*ooo,200-2*ooo);

            if(flag == 1)
            {
                  ooo=ooo+0.002;
            }
            if(flag == 0)
            {
                  ooo=ooo-0.002;
            }
            if(ooo>100){
                  flag = 0;
            }
            if(ooo<0.5)
            {
                 flag = 1;
            }

      }
}

void GPIO_Cfg(void)
{

    GPIO_InitTypeDef GPIO_InitStructure;
    //RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC|RCC_APB2Periph_GPIOA|RCC_APB2Periph_AFIO,ENABLE);

       //全部映射,将TIM3_CH2映射到PB5
       //根据STM32中文参考手册2010中第第119页可知:
       //当没有重映射时,TIM3的四个通道CH1,CH2,CH3,CH4分别对应PA6,PA7,PB0,PB1
       //当部分重映射时,TIM3的四个通道CH1,CH2,CH3,CH4分别对应PB4,PB5,PB0,PB1
       //当完全重映射时,TIM3的四个通道CH1,CH2,CH3,CH4分别对应PC6,PC7,PC8,PC9
       //也即是说,完全重映射之后,四个通道的PWM输出引脚分别为PC6,PC7,PC8,PC9,我们用到了通道1和通道2,所以对应引脚为PC6,PC7,PC8,PC9,我们用到了通道1和通道2,所以对应引脚为
       GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);

       //部分重映射的参数
       //GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE);

    //设置PC6、PC7、PC8、PC9为复用输出,输出4路PWM
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_6|GPIO_Pin_7|GPIO_Pin_8|GPIO_Pin_9;
    GPIO_Init(GPIOC,&GPIO_InitStructure);

}

void TIM_Cfg(void)
{
     //定义结构体
     TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

       //重新将Timer设置为缺省值
       TIM_DeInit(TIM3);
       //采用内部时钟给TIM2提供时钟源
       TIM_InternalClockConfig(TIM3);

     //预分频系数为0,即不进行预分频,此时TIMER的频率为72MHzre.TIM_Prescaler =0;
       TIM_TimeBaseStructure.TIM_Prescaler = 0;
     //设置计数溢出大小,每计20000个数就产生一个更新事件
       TIM_TimeBaseStructure.TIM_Period = 7200 - 1;
       //设置时钟分割
       TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
       //设置计数器模式为向上计数模式
       TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;

       //将配置应用到TIM2中
       TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);
       //清除溢出中断标志
       //TIM_ClearFlag(TIM2, TIM_FLAG_Update);
       //禁止ARR预装载缓冲器
       //TIM_ARRPreloadConfig(TIM2, DISABLE);
       //开启TIM2的中断
       //TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);

}

/*******************************************************************************
* 函 数 名         : PWM波产生配置函数
* 函数功能         : PWM_Cfg
* 输    入         : dutyfactor 占空比数值,大小从0.014到100
* 输    出         : 无
*******************************************************************************/
void PWM_Cfg(float dutyfactor1,float dutyfactor2,float dutyfactor3,float dutyfactor4)
{
    TIM_OCInitTypeDef TIM_OCInitStructure;
      //设置缺省值
      TIM_OCStructInit(&TIM_OCInitStructure);

      //TIM3的CH1输出
    TIM_OCInitStructure.TIM_OCMode       = TIM_OCMode_PWM1; //设置是PWM模式还是比较模式
    TIM_OCInitStructure.TIM_OutputState  = TIM_OutputState_Enable; //比较输出使能,使能PWM输出到端口
    TIM_OCInitStructure.TIM_OCPolarity   = TIM_OCPolarity_High; //设置极性是高还是低
      //设置占空比,占空比=(CCRx/ARR)*100%或(TIM_Pulse/TIM_Period)*100%
      TIM_OCInitStructure.TIM_Pulse = dutyfactor1 * 7200 / 100;
      TIM_OC1Init(TIM3, &TIM_OCInitStructure);

      //TIM3的CH2输出
      TIM_OCInitStructure.TIM_OCMode       = TIM_OCMode_PWM1; //设置是PWM模式还是比较模式
    TIM_OCInitStructure.TIM_OutputState  = TIM_OutputState_Enable; //比较输出使能,使能PWM输出到端口
    TIM_OCInitStructure.TIM_OCPolarity   = TIM_OCPolarity_High; //设置极性是高还是低
      //设置占空比,占空比=(CCRx/ARR)*100%或(TIM_Pulse/TIM_Period)*100%
      TIM_OCInitStructure.TIM_Pulse = dutyfactor2 * 7200 / 100;
      TIM_OC2Init(TIM3, &TIM_OCInitStructure);

      //TIM3的CH3输出
      TIM_OCInitStructure.TIM_OCMode       = TIM_OCMode_PWM1; //设置是PWM模式还是比较模式
    TIM_OCInitStructure.TIM_OutputState  = TIM_OutputState_Enable; //比较输出使能,使能PWM输出到端口
    TIM_OCInitStructure.TIM_OCPolarity   = TIM_OCPolarity_High; //设置极性是高还是低
      //设置占空比,占空比=(CCRx/ARR)*100%或(TIM_Pulse/TIM_Period)*100%
      TIM_OCInitStructure.TIM_Pulse = dutyfactor3 * 7200 / 100;
      TIM_OC3Init(TIM3, &TIM_OCInitStructure);

      //TIM3的CH4输出
      TIM_OCInitStructure.TIM_OCMode       = TIM_OCMode_PWM1; //设置是PWM模式还是比较模式
    TIM_OCInitStructure.TIM_OutputState  = TIM_OutputState_Enable; //比较输出使能,使能PWM输出到端口
    TIM_OCInitStructure.TIM_OCPolarity   = TIM_OCPolarity_High; //设置极性是高还是低
      //设置占空比,占空比=(CCRx/ARR)*100%或(TIM_Pulse/TIM_Period)*100%
      TIM_OCInitStructure.TIM_Pulse = dutyfactor4 * 7200 / 100;
      TIM_OC4Init(TIM3, &TIM_OCInitStructure);

      //使能输出状态
      TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;

    //设置TIM3的PWM输出为使能
      TIM_CtrlPWMOutputs(TIM3,ENABLE);
}

void NVIC_Cfg(void)
{
    //定义结构体
    NVIC_InitTypeDef NVIC_InitStructure;

    //选择中断分组1
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

    //选择TIM2的中断通道
      NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
      //抢占式中断优先级设置为0
      NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
      //响应式中断优先级设置为0
      NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
      //使能中断
      NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

    NVIC_Init(&NVIC_InitStructure);
}

void RCC_Cfg(void)
{
     //定义错误状态变量
       ErrorStatus HSEStartUpStatus;

       //将RCC寄存器重新设置为默认值
       RCC_DeInit();

       //打开外部高速时钟晶振
       RCC_HSEConfig(RCC_HSE_ON);

       //等待外部高速时钟晶振工作
       HSEStartUpStatus = RCC_WaitForHSEStartUp();

       if(HSEStartUpStatus == SUCCESS)
       {
             //设置AHB时钟(HCLK)为系统时钟
              RCC_HCLKConfig(RCC_SYSCLK_Div1);

              //设置高速AHB时钟(APB2)为HCLK时钟
              RCC_PCLK2Config(RCC_HCLK_Div1);

              //设置低速AHB时钟(APB1)为HCLK的2分频
              RCC_PCLK1Config(RCC_HCLK_Div2);

              //设置FLASH代码延时
              FLASH_SetLatency(FLASH_Latency_2);

              //使能预取指缓存
              FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

              //设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz
              RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

              //使能PLL
              RCC_PLLCmd(ENABLE);

              //等待PLL准备就绪
              while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);

              //设置PLL为系统时钟源
              RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

              //判断PLL是否是系统时钟
              while(RCC_GetSYSCLKSource() != 0x08);

       }

       //允许TIM2的时钟
       RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);

       //允许GPIO的时钟
       RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOC|RCC_APB2Periph_AFIO,ENABLE);

}

void TIM2_IRQHandler(void)
{
    u16 aa=10;
    if(TIM_GetFlagStatus(TIM2,TIM_IT_Update)!=RESET)
    {
        //清除TIM2的中断待处理位
            TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update);

        TIM_Cmd(TIM2,DISABLE);
            //通过循环让灯闪烁
        while (aa){
            GPIO_SetBits(GPIOC,GPIO_Pin_3);
            delay_ms(10);
            GPIO_ResetBits(GPIOC,GPIO_Pin_3);
            delay_ms(10);
            aa--;
        }
    //使灯的状态为灭
    GPIO_SetBits(GPIOC,GPIO_Pin_3);
    TIM_Cmd(TIM2,ENABLE);
    }
}

void delay_ms(u32 i)
{
    u32 temp;
    SysTick->LOAD=9000*i;      //设置重装数值, 72MHZ时
    SysTick->CTRL=0X01;        //使能,减到零是无动作,采用外部时钟源
    SysTick->VAL=0;            //清零计数器
    do
    {
        temp=SysTick->CTRL;       //读取当前倒计数值
    }
    while((temp&0x01)&&(!(temp&(1<<16))));    //等待时间到达
    SysTick->CTRL=0;    //关闭计数器
    SysTick->VAL=0;        //清空计数器
}

在产生PWM时,如果输出引脚已经被使用,就要对引脚进行重映射,阅读《STM32中文参考手册2010》第119页可知:

对TIM3而言:

1、当没有重映射时,TIM3的四个通道CH1,CH2,CH3,CH4分别对应PA6,PA7,PB0,PB1
2、当部分重映射时,TIM3的四个通道CH1,CH2,CH3,CH4分别对应PB4,PB5,PB0,PB1
3、当完全重映射时,TIM3的四个通道CH1,CH2,CH3,CH4分别对应PC6,PC7,PC8,PC9

为了整齐,我们选择完全重映射,使用的函数是:

GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);

如果想使用部分映射,参数用GPIO_PartialRemap_TIM3:

GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE);
时间: 2025-01-12 04:41:16

STM32F103 使用TIM3产生四路PWM的相关文章

增量式PID的stm32实现(转)

源:增量式PID的stm32实现,整定过程 首先说说增量式PID的公式,这个关系到MCU算法公式的书写,实际上两个公式的写法是同一个公式变换来得,不同的是系数的差异. 资料上比较多的是: 还有一种是: 感觉第二种的Kp Ki Kd比较清楚,更好理解,下面介绍的就以第二种来吧.(比例.积分.微分三个环节的作用这里就详细展开,百度会有很多) 硬件部分: 控制系统的控制对象是4个空心杯直流电机,电机带光电编码器,可以反馈转速大小的波形.电机驱动模块是普通的L298N模块. 芯片型号,STM32F103

PID的公式

增量式PID的公式,这个关系到MCU算法公式的书写,实际上两个公式的写法是同一个公式变换来得,不同的是系数的差异. 资料上比较多的是: 还有一种是: 感觉第二种的Kp Ki Kd比较清楚,更好理解,下面介绍的就以第二种来吧.(比例.积分.微分三个环节的作用这里就详细展开,百度会有很多) 硬件部分: 控制系统的控制对象是4个空心杯直流电机,电机带光电编码器,可以反馈转速大小的波形.电机驱动模块是普通的L298N模块. 芯片型号,STM32F103ZET6 软件部分: PWM输出:TIM3,可以直接

STM32中的PWM的频率和占空比的设置

转于http://blog.csdn.net/liming0931/article/details/8491468 下面的这个是stm32的定时器逻辑图,上来有助于理解: TIM3的ARR寄存器和PSC寄存器, 确定PWM频率.这里配置的这两个定时器确定了PWM的频率,我的理解是:PWM的周期(频率)就是ARR寄存器值与PSC寄存器值相乘得来,但不是简单意义上的相乘,例如要设置PWM的频率参考上次通用定时器中设置溢出时间的算法,例如输出100HZ频率的PWM,首先,确定TIMx的时钟,除非APB

STM32之PWM君

PWM..英语好的人估计又知道这三个大写字母代表哪三个英语单词了.小弟不才,就说中文意思好了:脉冲宽度调制,玩过飞思卡尔的人估计对PWM非常的不陌生吧.电机驱动需要PWM,控制舵机的转向需要PWM,总之.可以说,PWM,you are so good. 好了..言归正传,广大的互联网的网友们,咱们又见面了,大家早上晚上中午好好好.额..好像也没见过面,STM32的PWM,可谓是小强中的小强,STM32的PWM,就是由定时器产生的,但是奇怪的是除了定时器TIM6和TIM7不能产生PWM外,其他的定

STM32 PWM配置

一:配置TIM3的ARR寄存器和PSC寄存器,确定PWM频率. 这里配置的这两个定时器确定了PWM的频率,我的理解是:PWM的周期(频率)就是ARR寄存器值与PSC寄存器值相乘得来,但不是简单意义上的相乘,例如要设置PWM的频率参考上次通用定时器中设置溢出时间的算法,例如输出100HZ频率的PWM,首先,确定TIMx的时钟,除非APB1的时钟分频数设置为1,否则通用定时器TIMx的时钟是APB1时钟的2倍,这时的TIMx时钟为72MHz,用这个TIMx时钟72MHz除以(PSC+1),得到定时器

STM32学习笔记6(TIM通用模块生成PWM)

1.     TIMER输出PWM基本概念   脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术.简单一点,就是对脉冲宽度的控制.一般用来控制步进电机的速度等等. STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出. 1.1   PWM输出模式 S

(五)转载:通用定时器PWM输出

1.     TIMER输出PWM基本概念   脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术.简单一点,就是对脉冲宽度的控制.一般用来控制步进电机的速度等等. STM32的定时器除了TIM6和TIM7之外,其他的定时器都可以用来产生PWM输出,其中高级定时器TIM1和TIM8可以同时产生7路的PWM输出,而通用定时器也能同时产生4路的PWM输出. 1.1   PWM输出模式 S

STM32——PWM基本知识及配置过程

将通用定时器分为四个部分: 1,选择时钟 2,时基电路 3,输入捕获 4,输出比较 本节定时器PWM输出主要涉及到定时器框图右下方部分,即输出比较部分 和上一讲相同,时基时钟来源于内部默认时钟 对此有疑问请参考 : 定时器中断实验 中 定时器时钟选择部分 和 定时器时钟来源部分 什么是PWM 脉冲宽度调制(PWM),是英文"Pulse Width Modulation"的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量.通信到功率控

6、PWM

1. PWM 是 Pulse Width Modulation 的缩写,中文意思就是脉冲宽度调制,简称脉宽调制. 它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,其控制简单.灵活和动态响应好等优点而成为电力电子技术最广泛应用的控制方式, 其应用领域包括测量,通信,功率控制与变换,电动机控制.伺服控制.调光.开关电源,甚至某些音频放大器,因此研究基于 PWM 技术的正负脉宽数控调制信号发生器具有十分重要的现实意义. 2.PWM 是一种对模拟信号电平进行数字编码的方法.通过高分辨