笨办法理解动态规划算法

动态规划在编程中有着广泛的应用,对于某些问题我们可以通过动态规划显著的降低程序的时间复杂度。本质上动态规划并不是一种算法,而是解决一类问题的思想。本篇博客通过一些非常简单而又经典的问题(比如数塔、0-1背包、完全背包、走楼梯问题、最长公共子序列等)来帮助大家理解动态规划的一般套路。

欢迎探讨,如有错误敬请指正

如需转载,请注明出处 http://www.cnblogs.com/nullzx/

1 动态规划的基本思想

如果我们解决一个问题的时候能将一个大问题转换成一个或者若干个规模较小的同等性质的问题,当我们求解出这些小问题的答案后,大问题的答案很容易解决,对于这样的情况,显然我们可以递归(或者说分治)的方式解决问题。如果在求解这些小问题的过程中发现有些小问题我们需要重复计算多次,那么我们就干脆把已经求解过的小问题的答案记录下来放在一张表中,这样下次遇到这个小问题,我们只需要查表就可以直接得到结果,这个就是动态规划的白话讲解。动态规划的难点在于如何定义问题及子问题。

2. 笨办法的套路

1)如果可以将一个规模较大的问题转换成一个或若干个规模较小的子问题,也就是能找到递推关系,这个时候我们不妨先将程序写成递归的形式。

2)如果使用递归求解规模较小的问题上存在子问题重复求解的现象,那么我们就建立一张表(有可能这个表只有一行)记录需要重复求解的子问题。填表的过程和将大问题划分为子问题的方式相反,我们会从最简单的子问题开始填表。现在我们就利用这个套路解决下面这些经典的问题。

3.利用套路解题

3.1 菲波那切数列

问题描述:菲波那契数列的定义f(n) = f(n-1) + f(n-2), 且f(1)=1, f(2) = 1,求f(n)的值。斐波那契数列的定义本身就是将大问题转换成两个同性质的子问题,所以我们可以直接根据定义写成递归形式。

	public static int recursion(int n) {

		if (n < 0) {
			return 0;
		}

		if (n == 1 || n == 2) {
			return 1;
		}

		return recursion(n-1) + recursion(n-2);
	}

我们以f(6)为例现在把递归的过程画出来

我们发现在求解F(6)时,需要求解F(2)四次,求解F(1)三次,求解F(3)三次,F(4)两次,所以说我们的算法的效率是很低的。提高效率的办法就是将F(1),F(2),F(3) ….的结果放在表中,下次要计算这些问题的时候我们直接从表中获取就好了,这就是一个最简单的动态规划的例子。现在我们按照套路,从最小的子问开始填表就好了。

	public static int dynamic(int n) {

		int[] table = new int[n+1];

		table[1] = 1;
		table[2] = 1;

		/*从小到大填表*/
		for (int i = 3; i < table.length; i++) {
			table[i] = table[i-1] + table[i-2];
		}

		return table[n];
	}

需要说明的是,这个例子只是一个入门的例子,实际上它不存在最优子结构的问题,而且也不需要长度为n+1的table数组,只需要两个变量即可(可以理解为动态规划的优化版本),而我们之所以这样讲解只是为了让大家从动态规划的角度去理解问题。

原文地址:https://www.cnblogs.com/nullzx/p/10991305.html

时间: 2024-10-08 19:41:48

笨办法理解动态规划算法的相关文章

LeetCode44——用搜索的思路去理解动态规划算法

本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题的第24篇文章,我们一起来看LeetCode的44题--Wildcard Matching,这是一道Hard难度的问题,会稍稍有点难,但是好消息是没有出现我们之前没见过的算法. 题意很简单,给定两个字符串s和p,其中s是母串,p是模式串.简单解释一下这两个概念,这两个概念一般出现在字符串匹配的问题当中.有些同学可能不太理解,我们打个不恰当的比方,我们可以把母串想象成锁,把模式串想象成钥匙.一些万能钥匙可以打开多

对动态规划算法的理解及相关题目分析

1.对动态规划算法的理解 (1)基本思想: 动态规划算法的基本思想与分治法类似:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解中得到原问题的解.但是,与分治法不同的是,为了避免重复多次计算子问题,动态规划算法用一个表记录所有已解决的子问题的答案,不管该子问题以后是否被利用,只要它被计算过,就将其结果填入表中. (2)设计动态规划算法的步骤: ①找出最优解的性质,并刻画其结构特征 ②递归地定义最优值 ③以自底向上的方式计算最优值 ④根据计算最优值时得到的信息构造最优解 (3)

动态规划算法的理解

什么是动态规划算法? 动态规划算法其实质就是分治思想和解决冗余.因此它与分治法和贪心法类似,都是将待求解问题分解为更小的,相同的子问题,然后对子问题进行求解,最终产生一个整体最优解. 适合采用动态规划法求解的问题,经分解得到的各个子问题往往不是相互独立的.在求解过程中,将已解决的子问题的解进行保存,在需要时可以轻松地找出. 示例如下: Fibonacci数列       0   n=0 f(n)=  1   n=1 f(n-1)+f(n-2)    n>1 如果n=4,则f(4)=f(3)+f(

这本Python入门畅销书《“笨办法”学python 3》,不仅仅是一本书

此前,小编分享过一篇文章<跟着数百万人编程导师学C语言!>,介绍的是泽德 A. 肖大神的新书<"笨办法"学C语言>很多用户在后台留言,<"笨办法"学Python 3>什么时候出版?今天这本书终于在六月初与大家见面啦,与作者其他的图书风格一样,<"笨办法"学Python 3>也不仅仅是一本书,随书附赠5个多小时充满激情的视频,这是一套完整的Python语言视频课程! 纯正的美式发音,中文字幕,边看边练

动态规划算法(Dynamic Programming,简称 DP)

动态规划算法(Dynamic Programming,简称 DP)似乎是一种很高深莫测的算法,你会在一些面试或算法书籍的高级技巧部分看到相关内容,什么状态转移方程,重叠子问题,最优子结构等高大上的词汇也可能让你望而却步. 而且,当你去看用动态规划解决某个问题的代码时,你会觉得这样解决问题竟然如此巧妙,但却难以理解,你可能惊讶于人家是怎么想到这种解法的. 实际上,动态规划是一种常见的「算法设计技巧」,并没有什么高深莫测,至于各种高大上的术语,那是吓唬别人用的,只要你亲自体验几把,这些名词的含义其实

01背包问题的动态规划算法

01背包问题我最初学会的解法是回溯法,第一反应并不是用动态规划算法去解答.原因是学习动态规划算法的时候,矩阵连乘.最长公共子串等问题很容易将问题离散化成规模不同的子问题,比较好理解,而对于01背包问题则不容易想到将背包容量离散化抽象出子问题,从情感上先入为主也误以为动态规划算法不是解决01背包问题的好方法,实际上并不是这样的.另外,动态规划算法不对子问题进行重复计算,但是要自底向上将所有子问题都计算一遍,直到计算出最终问题的结果也就是我们要的答案,有点像爬山的感觉. 问题描述:给定n种物品和一背

一步一步理解Paxos算法

一步一步理解Paxos算法 背景 Paxos 算法是Lamport于1990年提出的一种基于消息传递的一致性算法.由于算法难以理解起初并没有引起人们的重视,使Lamport在八年后重新发表到 TOCS上.即便如此paxos算法还是没有得到重视,2001年Lamport用可读性比较强的叙述性语言给出算法描述.可见Lamport对 paxos算法情有独钟.近几年paxos算法的普遍使用也证明它在分布式一致性算法中的重要地位.06年google的三篇论文初现“云”的端倪,其中的chubby锁服务使用p

动态规划算法之滚动数组的求解(C++)

虽然接触动态规划算法已经有一段时间,给一个01背包问题,能够做到一个表格简单粗暴下去,然后求得结果,但心里总觉得对这个算法理解十分不到位,抱着对算法的热爱,网上很多大牛的算法思维实在让我佩服的五体投地.在此讲一讲动态规划中滚动数组的求解方法,算是对这个知识点做一个记录,也希望有写的不妥的地方,大家能不吝赐教. 首先,我们先看看"滚动数组"的例题,大家可以参考http://www.lintcode.com/en/problem/house-robber/ 题意大概就是说:一个盗贼要去偷盗

从零实现来理解机器学习算法:书籍推荐及障碍的克服

前部为英文原文,原文链接:http://machinelearningmastery.com/understand-machine-learning-algorithms-by-implementing-them-from-scratch/ 后部为中文翻译,本文中文部分转自:http://www.csdn.net/article/2015-09-08/2825646 Understand Machine Learning Algorithms By Implementing Them From