122 python程序中的线程操作-concurrent模块

一、concurrent模块的介绍

concurrent.futures模块提供了高度封装的异步调用接口

ThreadPoolExecutor:线程池,提供异步调用

ProcessPoolExecutor:进程池,提供异步调用

ProcessPoolExecutor 和 ThreadPoolExecutor:两者都实现相同的接口,该接口由抽象Executor类定义。

二、基本方法

submit(fn, *args, **kwargs):异步提交任务

map(func, *iterables, timeout=None, chunksize=1):取代for循环submit的操作

shutdown(wait=True):相当于进程池的pool.close()+pool.join()操作

  • wait=True,等待池内所有任务执行完毕回收完资源后才继续
  • wait=False,立即返回,并不会等待池内的任务执行完毕
  • 但不管wait参数为何值,整个程序都会等到所有任务执行完毕
  • submit和map必须在shutdown之前

result(timeout=None):取得结果

add_done_callback(fn):回调函数

三、进程池和线程池

池的功能:限制进程数或线程数.

什么时候限制: 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量 我就应该考虑去限制我进程数或线程数,从保证服务器不崩.

3.1 进程池

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process,current_process
import time

def task(i):
    print(f'{current_process().name} 在执行任务{i}')
    time.sleep(1)

if __name__ == '__main__':
    pool = ProcessPoolExecutor(4) # 进程池里又4个进程
    for i in range(20): # 20个任务
        pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个进程一次一次执行任务

3.2 线程池

from concurrent.futures import ThreadPoolExecutor
from threading import Thread,currentThread
import time

def task(i):
    print(f'{currentThread().name} 在执行任务{i}')
    time.sleep(1)

if __name__ == '__main__':
    pool = ThreadPoolExecutor(4) # 进程池里又4个线程
    for i in range(20): # 20个任务
        pool.submit(task,i)# 线程池里当前执行的任务i,池子里的4个线程一次一次执行任务

四、Map的用法

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import os,time,random
def task(n):
    print('%s is runing' %os.getpid())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    executor=ThreadPoolExecutor(max_workers=3)

    # for i in range(20):
    #     future=executor.submit(task,i)

    executor.map(task,range(1,21)) #map取代了for+submit

五、同步和异步

理解为提交任务的两种方式

同步: 提交了一个任务,必须等任务执行完了(拿到返回值),才能执行下一行代码

异步: 提交了一个任务,不要等执行完了,可以直接执行下一行代码.

同步:相当于执行任务的串行执行

异步

from concurrent.futures import ProcessPoolExecutor
from multiprocessing import Process,current_process
import time

n = 1

def task(i):
    global n
    print(f'{current_process().name} 在执行任务{i}')
    time.sleep(1)
    n += i
    return n

if __name__ == '__main__':
    pool = ProcessPoolExecutor(4) # 进程池里又4个线程
    pool_lis = []
    for i in range(20): # 20个任务
        future = pool.submit(task,i)# 进程池里当前执行的任务i,池子里的4个线程一次一次执行任务
        # print(future.result()) # 这是在等待我执行任务得到的结果,如果一直没有结果,这里会导致我们所有任务编程了串行
                               # 在这里就引出了下面的pool.shutdown()方法
        pool_lis.append(future)
    pool.shutdown(wait=True) # 关闭了池的入口,不允许在往里面添加任务了,会等带所有的任务执行完,结束阻塞
    for p in pool_lis:
        print(p.result())

    print(n)# 这里一开始肯定是拿到0的,因为我只是去告诉操作系统执行子进程的任务,代码依然会继续往下执行
    # 可以用join去解决,等待每一个进程结束后,拿到他的结果

六、回调函数

import time
from threading import Thread,currentThread
from concurrent.futures import ThreadPoolExecutor

def task(i):
    print(f'{currentThread().name} 在执行{i}')
    time.sleep(1)
    return i**2

# parse 就是一个回调函数
def parse(future):
    # 处理拿到的结果
    print(f'{currentThread().name} 结束了当前任务')
    print(future.result())

if __name__ == '__main__':
    pool = ThreadPoolExecutor(4)
    for i in range(20):
        future = pool.submit(task,i)

        '''
        给当前执行的任务绑定了一个函数,在当前任务结束的时候就会触发这个函数(称之为回调函数)
        会把future对象作为参数传给函数
        注:这个称为回调函数,当前任务处理结束了,就回来调parse这个函数
        '''
        future.add_done_callback(parse)
        # add_done_callback (parse) parse是一个回调函数
        # add_done_callback () 是对象的一个绑定方法,他的参数就是一个函数

原文地址:https://www.cnblogs.com/xichenHome/p/11569111.html

时间: 2024-11-07 05:13:21

122 python程序中的线程操作-concurrent模块的相关文章

Python程序中的线程操作-concurrent模块

Python程序中的线程操作-concurrent模块 一.Python标准模块--concurrent.futures 官方文档:https://docs.python.org/dev/library/concurrent.futures.html 二.介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor:进程池,提供异步调用 两者都实现相同的接口,该接口由抽象Execut

Python程序中的线程操作(线程池)-concurrent模块

目录 Python程序中的线程操作(线程池)-concurrent模块 一.Python标准模块--concurrent.futures 二.介绍 三.基本方法 四.ProcessPoolExecutor 五.ThreadPoolExecutor 六.map的用法 七.回调函数 Python程序中的线程操作(线程池)-concurrent模块 一.Python标准模块--concurrent.futures 官方文档:https://docs.python.org/dev/library/con

Python程序中的线程操作-锁

Python程序中的线程操作-锁 一.同步锁 1.1多个线程抢占资源的情况 from threading import Thread import os,time def work(): global n temp=n time.sleep(0.1) n=temp-1 if __name__ == '__main__': n=100 l=[] for i in range(100): p=Thread(target=work) l.append(p) p.start() for p in l:

119 python程序中的线程操作-守护线程

一.守护线程 无论是进程还是线程,都遵循:守护xx会等待主xx运行完毕后被销毁.需要强调的是:运行完毕并非终止运行. 对主进程来说,运行完毕指的是主进程代码运行完毕 对主线程来说,运行完毕指的是主线程所在的进程内所有非守护线程统统运行完毕,主线程才算运行完毕 1.1 详解 主进程在其代码结束后就已经算运行完毕了(守护进程在此时就被回收),然后主进程会一直等非守护的子进程都运行完毕后回收子进程的资源(否则会产生僵尸进程),才会结束. 主线程在其他非守护线程运行完毕后才算运行完毕(守护线程在此时就被

120 python程序中的线程操作-锁

一.同步锁 1.1 多个线程抢占资源的情况 from threading import Thread,Lock x = 0 def task(): global x for i in range(200000): x = x+1 # t1 的 x刚拿到0 保存状态 就被切了 # t2 的 x拿到0 进行+1 1 # t1 又获得运行了 x = 0 +1 1 # 这就产生了数据安全问题. if __name__ == '__main__': # 使用的是操作系统的原生线程. t1 = Thread

118 python程序中的线程操作-创建多线程

一.python线程的模块 1.1 thread和threading模块 thread模块提供了基本的线程和锁的支持 threading提供了更高级别.功能更强的线程管理的功能. 1.2 Queue模块 Queue模块允许用户创建一个可以用于多个线程之间共享数据的队列数据结构. 1.3注意模块的选择 避免使用thread模块 因为更高级别的threading模块更为先进,对线程的支持更为完善 而且使用thread模块里的属性有可能会与threading出现冲突: 其次低级别的thread模块的同

121 python程序中的线程操作-队列queue

一.线程队列 queue队列:使用方法同进程的Queue一样 如果必须在多个线程之间安全地交换信息时,队列在线程编程中尤其有用. 重要: q.put():往队列里面放值,当参数block=Ture的时候,timeout参数将会有作用,当队列已经满了的时候,在往里面放值时,block为True程序将会等待timeout的时间,过了时间程序会报错,block如果为Flase时,程序不会等待直接报错 q.get():从队列里面取值,当参数block=Ture的时候,timeout参数将会有作用,当队列

121 Python程序中的线程操作-线程定时器

目录 一.线程定时器 二.用法 一.线程定时器 线程定时器也是定时器,就是定时之后开启一条线程 二.用法 ''' 线程定时器,就是规定时间后开启一条线程 ''' def task(): print('线程执行了') time.sleep(2) print('线程结束了') t = Timer(4,task) # 间隔时间, 功能函数 t.start() 原文地址:https://www.cnblogs.com/XuChengNotes/p/11553061.html

Python程序中的进程操作-进程池(multiprocess.Pool)

Python程序中的进程操作-进程池(multiprocess.Pool) 一.进程池 为什么要有进程池?进程池的概念. 在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务.那么在成千上万个任务需要被执行的时候,我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间.第二即便开启了成千上万的进程,操作系统也不能让他们同时执行,这样反而会影响程序的效率.因此我们不能无限制的根据任务开启或者结束进程.那么我们要怎么做呢? 在这里,要给大家介