CNN-2: AlexNet 卷积神经网络模型

1、AlexNet 模型简介

由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注。 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习重新引起了广泛的关注。

2、AlexNet 模型特点

AlexNet是在LeNet的基础上加深了网络的结构,学习更丰富更高维的图像特征。AlexNet的特点:
1)更深的网络结构
2)使用层叠的卷积层,即卷积层+卷积层+池化层来提取图像的特征
3)使用Dropout抑制过拟合
4)使用数据增强Data Augmentation抑制过拟合
5)使用Relu替换之前的sigmoid的作为激活函数
6)多GPU训练

ReLu作为激活函数

在最初的感知机模型中,输入和输出的关系如下:

${y = \sum\limits_i {{w_i}{x_i}}  + b}$

只是单纯的线性关系,这样的网络结构有很大的局限性:即使用很多这样结构的网络层叠加,其输出和输入仍然是线性关系,无法处理有非线性关系的输入输出。因此,对每个神经元的输出做个非线性的转换也就是,将上面就加权求和${\sum\nolimits_i {{w_i}{x_i}}  + b}$的结果输入到一个非线性函数,也就是激活函数中。 这样,由于激活函数的引入,多个网络层的叠加就不再是单纯的线性变换,而是具有更强的表现能力。

在最初,sigmoidtanh函数最常用的激活函数。

1) sigmoid

            ${\sigma \left( x \right) = \frac{1}{{1 + {e^{ - x}}}}}$

在网络层数较少时,sigmoid函数的特性能够很好的满足激活函数的作用:它把一个实数压缩至0到1之间,当输入的数字非常大的时候,结果会接近1;当输入非常大的负数时,则会得到接近0的结果。这种特性,能够很好的模拟神经元在受刺激后,是否被激活向后传递信息(输出为0,几乎不被激活;输出为1,完全被激活)。

sigmoid一个很大的问题就是梯度饱和。 观察sigmoid函数的曲线,当输入的数字较大(或较小)时,其函数值趋于不变,其导数变的非常的小。这样,在层数很多的的网络结构中,进行反向传播时,由于很多个很小的sigmoid导数累成,导致其结果趋于0,权值更新较慢。

2) ReLu

${ReLU\left( x \right) = max\left( {0\user1{,}x} \right)}$


针对sigmoid梯度饱和导致训练收敛慢的问题,在AlexNet中引入了ReLU。ReLU是一个分段线性函数,小于等于0则输出为0;大于0的则恒等输出。相比于sigmoid,ReLU有以下有点:
1)计算开销下。sigmoid的正向传播有指数运算,倒数运算,而ReLu是线性输出;反向传播中,sigmoid有指数运算,而ReLU有输出的部分,导数始终为1.
2)梯度饱和问题
3)稀疏性。Relu会使一部分神经元的输出为0,这样就造成了网络的稀疏性,并且减少了参数的相互依存关系,缓解了过拟合问题的发生。

这里有个问题,前面提到,激活函数要用非线性的,是为了使网络结构有更强的表达的能力。那这里使用ReLU本质上却是个线性的分段函数,是怎么进行非线性变换的。  这里把神经网络看着一个巨大的变换矩阵M,其输入为所有训练样本组成的矩阵A,输出为矩阵B。

${B = M \cdot A}$

这里的M是一个线性变换的话,则所有的训练样本A进行了线性变换输出为B。  那么对于ReLU来说,由于其是分段的,0的部分可以看着神经元没有激活,不同的神经元激活或者不激活,其神经玩过组成的变换矩阵是不一样的。也就是说,每个训练样本使用的线性变换矩阵是不一样的,在整个训练样本空间来说,其经历的是非线性变换。

简单来说,不同训练样本中的同样的特征,在经过神经网络学习时,流经的神经元是不一样的(激活函数值为0的神经元不会被激活)。这样,最终的输出实际上是输入样本的非线性变换。单个训练样本是线性变换,但是每个训练样本的线性变换是不一样的,这样整个训练样本集来说,就是非线性的变换。

数据增强

神经网络由于训练的参数多,表能能力强,所以需要比较多的数据量,不然很容易过拟合。当训练数据有限时,可以通过一些变换从已有的训练数据集中生成一些新的数据,以快速地扩充训练数据。对于图像数据集来说,可以对图像进行一些形变操作:
1) 翻转
2) 随机裁剪
3)平移,颜色光照的变换
...

AlexNet中对数据做了以下操作:
1)随机裁剪,对256×256的图片进行随机裁剪到227×227,然后进行水平翻转。
2)测试的时候,对左上、右上、左下、右下、中间分别做了5次裁剪,然后翻转,共10个裁剪,之后对结果求平均。
3)对RGB空间做PCA(主成分分析),然后对主成分做一个(0, 0.1)的高斯扰动,也就是对颜色、光照作变换,结果使错误率又下降了1%。

 层叠池化

在LeNet中池化是不重叠的,即池化的窗口的大小和步长是相等的,如下:

在AlexNet中使用的池化(Pooling)却是可重叠的,也就是说,在池化的时候,每次移动的步长小于池化的窗口长度。AlexNet池化的大小为3×3的正方形,每次池化移动步长为2,这样就会出现重叠。重叠池化可以避免过拟合,这个策略贡献了0.3%的Top-5错误率。与非重叠方案s=2,z=2相比,输出的维度是相等的,并且能在一定程度上抑制过拟合。

 局部相应归一化

ReLU具有让人满意的特性,它不需要通过输入归一化来防止饱和。如果至少一些训练样本对ReLU产生了正输入,那么那个神经元上将发生学习。然而,我们仍然发现接下来的局部响应归一化有助于泛化。${a_{x{,}y}^i}$表示神经元激活,通过在(x,y)(位置应用核${i}$然后应用ReLU非线性来计算,响应归一化激活${b_{x{,}y}^i}$通过下式给定:

${b_{x{,}y}^i = \frac{{a_{x{,}y}^i}}{{{{\left( {k + \alpha \sum\limits_{j = {max}\left( {{0,}{{{i - n}} \mathord{\left/
 {\vphantom {{{i - n}} 2}} \right.
 \kern-\nulldelimiterspace} 2}} \right)}^{{min(N - 1,}{{{i + n}} \mathord{\left/
 {\vphantom {{{i + n}} 2}} \right.
 \kern-\nulldelimiterspace} 2}{)}} {{{\left( {a_{x{,}y}^j} \right)}^2}} } \right)}^\beta }}}}$

其中,N是卷积核的个数,也就是生成的FeatureMap的个数;${k{,}\alpha {,}\beta {,}n}$是超参数,论文中使用的值是${k = 2{,}\alpha  = {10^{ - 4}}{,}\beta  = 0.75{,}n = 5}$。输出${b_{x{,}y}^i}$和输入${a_{x{,}y}^i}$的上标表示的是当前值所在的通道,也即是叠加的方向是沿着通道进行。将要归一化的值${a_{x{,}y}^i}$所在附近通道相同位置的值的平方累加起来${\sum\nolimits_{j = {max}\left( {{0,}{{{i - n}} \mathord{\left/
 {\vphantom {{{i - n}} 2}} \right.
 \kern-\nulldelimiterspace} 2}} \right)}^{{min(N - 1,}{{{i + n}} \mathord{\left/
 {\vphantom {{{i + n}} 2}} \right.
 \kern-\nulldelimiterspace} 2}{)}} {{{\left( {a_{x{,}y}^j} \right)}^2}} }$

Dropout

这个是比较常用的抑制过拟合的方法了。 引入Dropout主要是为了防止过拟合。在神经网络中Dropout通过修改神经网络本身结构来实现,对于某一层的神经元,通过定义的概率将神经元置为0,这个神经元就不参与前向和后向传播,就如同在网络中被删除了一样,同时保持输入层与输出层神经元的个数不变,然后按照神经网络的学习方法进行参数更新。在下一次迭代中,又重新随机删除一些神经元(置为0),直至训练结束。 Dropout应该算是AlexNet中一个很大的创新,现在神经网络中的必备结构之一。Dropout也可以看成是一种模型组合,每次生成的网络结构都不一样,通过组合多个模型的方式能够有效地减少过拟合,Dropout只需要两倍的训练时间即可实现模型组合(类似取平均)的效果,非常高效。 如下图:

3、Alex网络结构

注:上图中的输入是224×224,不过经过计算(224−11)/4=54.75并不是论文中的55×55,而使用227×227作为输入,则(227−11)/4=55。

网络包含8个带权重的层;前5层是卷积层,剩下的3层是全连接层。最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000类标签的分布网络包含8个带权重的层;前5层是卷积层,剩下的3层是全连接层。最后一层全连接层的输出是1000维softmax的输入,softmax会产生1000类标签的分布。

  • 卷积层C1

该层的处理流程是: 卷积-->ReLU-->池化-->归一化。
          1)卷积,输入是227×227,使用96个11×11×3的卷积核,得到的FeatureMap为55×55×96。
          2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中。
          3)池化,使用3×3步长为2的池化单元(重叠池化,步长小于池化单元的宽度),输出为27×27×96((55−3)/2+1=27)。
          4)局部响应归一化,使用k=2,n=5,α=10−4,β=0.75进行局部归一化,输出的仍然为27×27×96,输出分为两组,每组的大小为27×27×48。

  •  卷积层C2

该层的处理流程是:卷积-->ReLU-->池化-->归一化。
            1)卷积,输入是2组27×27×48。使用2组,每组128个尺寸为5×5×48的卷积核,并作了边缘填充padding=2,卷积的步长为1. 则输出的FeatureMap为2组,每组的大小为 27×27 times128. ((27+2∗2−5)/1+1=27)。
            2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中。
            3)池化运算的尺寸为3×3,步长为2,池化后图像的尺寸为(27−3)/2+1=13,输出为13×13×256。
            4)局部响应归一化,使用k=2,n=5,α=10−4,β=0.75进行局部归一化,输出的仍然为13×13×256,输出分为2组,每组的大小为13×13×128。

  • 卷积层C3

该层的处理流程是: 卷积-->ReLU。
           1)卷积,输入是13×13×256,使用2组共384尺寸为3×3×256的卷积核,做了边缘填充padding=1,卷积的步长为1.则输出的FeatureMap为13×13 times384。
           2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中。

  • 卷积层C4

该层的处理流程是: 卷积-->ReLU
           该层和C3类似。
           1)卷积,输入是13×13×384,分为两组,每组为13×13×192.使用2组,每组192个尺寸为3×3×192的卷积核,做了边缘填充padding=1,卷积的步长为1.则输出的FeatureMap为13×13 times384,分为两组,每组为13×13×192。
           2)ReLU,将卷积层输出的FeatureMap输入到ReLU函数中。

原文地址:https://www.cnblogs.com/ai-learning-blogs/p/11107819.html

时间: 2024-11-08 20:43:18

CNN-2: AlexNet 卷积神经网络模型的相关文章

基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型

一.卷积神经网络模型知识要点卷积卷积 1.卷积 2.池化 3.全连接 4.梯度下降法 5.softmax 本次就是用最简单的方法给大家讲解这些概念,因为具体的各种论文网上都有,连推导都有,所以本文主要就是给大家做个铺垫,如有错误请指正,相互学习共同进步. 二.卷积神经网络讲解 2.1卷积神经网络作用 大家应该知道大名鼎鼎的傅里叶变换,即一个波形,可以有不同的正弦函数和余弦函数进行叠加完成,卷积神经网络也是一样,可以认为一张图片是由各种不同特征的图片叠加而成的,所以它的作用是用来提取特定的特征,举

利用Tensorflow实现卷积神经网络模型

首先看一下卷积神经网络模型,如下图: 卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC池化层:为了减少运算量和数据维度而设置的一种层. 代码如下: n_input = 784 # 28*28的灰度图 n_output = 10 # 完成一个10分类的操作 weights = { #'权重参数': tf.Variable(tf.高期([feature的H, feature的W, 当前feature连接的输入的深度, 最终想得到

VGG卷积神经网络模型解析

VGG卷积神经网络模型解析 一:VGG介绍与模型结构 VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸识别.图像分类等方面,分别从VGG16-VGG19.VGG研究卷积网络深度的初衷是想搞清楚卷积网络深度是如何影响大规模图像分类与识别的精度和准确率的,最初是VGG-16号称非常深的卷积网络全称为(GG-Very-Deep-16 CNN),VGG在加深网络层数同时为了避免参数过多,在所有层都采用3x3的小卷积核,

【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构建CNN[待学习] 全连接+各种优化[待学习] BN层[待学习] 先解释以下MNIST数据集,训练数据集有55,000 条,即X为55,000 * 784的矩阵,那么Y为55,000 * 10的矩阵,每个图片是28像素*28像素,带有标签,Y为该图片的真实数字,即标签,每个图片10个数字,1所在位置

深度学习与自然语言处理之四:卷积神经网络模型(CNN)

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 大纲如下: 1.CNN基础模型 2.单CNN模型的改进    2.1对输入层的改进    2.2Convolution层的改进    2.3Sub-Sampling层的改进    2.4全连接层的改进 3.多CNN模型的改进 4.探讨与思考 扫一扫关注微信号:"布洛卡区" ,深度学习在自然语言处理等智能应用的技术研讨与科普公众号.

轻量化卷积神经网络模型总结by wilson(shffleNet,moblieNet,squeezeNet+Xception)

一.简介 主要参考博客:纵览轻量化卷积神经网络 https://zhuanlan.zhihu.com/p/32746221 1, SqueezeNet: SqueezeNet对比AlexNet能够减少50倍的网络参数,但是却拥有相近的性能.SqueezeNet主要强调用1x1的卷积核进行feature map个数的压缩,从而达到大量减少网络参数的目的.在构造网络的时候,采用VGG的堆叠思想. 2, moblieNet: MobileNet采用depth-wise convolution的卷积方式

动手学pytorch-经典卷积神经网络模型

经典卷积神经网络 1.LeNet 2.AlexNet 3.VGG 4.NiN 5.GoogleNet 1.LeNet 卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性.卷积层块由两个这样的基本单位重复堆叠构成.在卷积层块中,每个卷积层都使用5×5的窗口,并在输出上使用sigmoid激活函数.第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16.全连接层块含3个全连接层.它们的输出个数分别是120

吴裕雄--天生自然python Google深度学习框架:经典卷积神经网络模型

import tensorflow as tf INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE_SIZE = 28 NUM_CHANNELS = 1 NUM_LABELS = 10 CONV1_DEEP = 32 CONV1_SIZE = 5 CONV2_DEEP = 64 CONV2_SIZE = 5 FC_SIZE = 512 def inference(input_tensor, train, regularizer): with tf.variable_s

神经网络模型种类

神经网络模型种类 一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征.一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来:其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等.特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性.此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数.卷积神经网络中的每一个卷积层